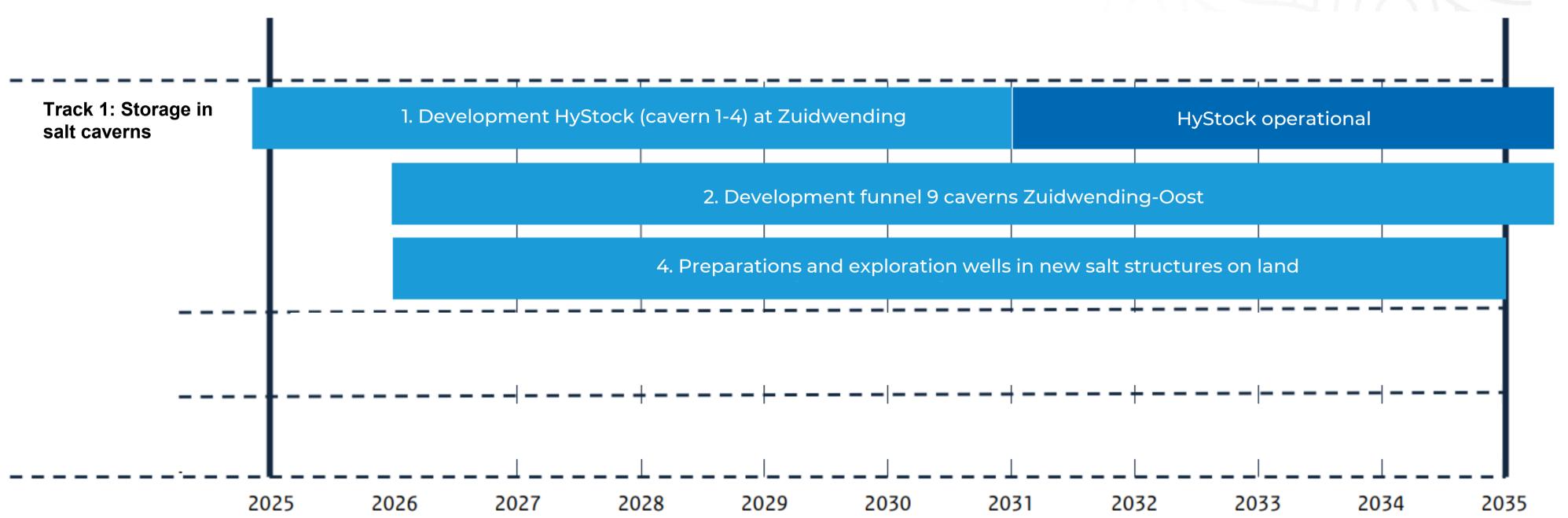


SCREENING THE DUTCH GAS FIELDS ON SUITABILITY FOR HYDROGEN STORAGE

Silke van Klaveren - EBN

WHAT IS THE DIFFERENCE BETWEEN HOLLAND AND THE NETHERLANDS?



Nationale Agenda Ondergrondse Waterstofopslag

Het belang van waterstofopslag voor het energiesysteem

MILESTONES NATIONAL AGENDA

7.2 Spoor 2: Gasvelden op land of nabij de kust (near-shore)

De opslagvolumes in een gasveld zijn aanzienlijk groter dan in een caverne. Kennisontwikkeling en technologische innovaties zijn nodig voordat dergelijke opslagen ontwikkeld kunnen worden (zie Hoofdstuk3). Het duurt dan ook tien tot vijftien jaar voordat een commerciële ondergrondse waterstofopslag in een Nederlands gasveld operationeel kan zijn (mits aangetoond wordt dat dit technisch mogelijk en veilig is). Een commercieel opslagproject komt dus op zijn vroegst tussen 2035 en 2040 beschikbaar. Daarom is het van belang om nu te starten met de ontwikkeling van een **demonstratieproject**.

Ter voorbereiding zijn Nederlandse organisaties, waaronder TNO en EBN betrokken bij verschillende Europese trajecten zoals EUH2STARS en IEA-TCP Task42. Het doel is de ontwikkeling van operationele demonstratieprojecten voor opslag in lege gasvelden (TRL 8).45

Met een Nederlands demonstratieproject kan er voortgebouwd worden op deze kennis. Ter voorbereiding voert EBN een verkenning uit welke gasvelden potentieel geschikt zijn en aan welke voorwaarden het demonstratieproject moet voldoen (EBN, 2025a). Nederland telt circa 140 potentieel geschikte gasvelden op land en op zee (EBN, 2025b). Voor een demonstratieproject wordt gedacht aan een locatie op land of mogelijk *near-shore*. Nabij de haven van Rotterdam zijn hiervoor enkele interessante kandidaatlocaties in beeld.

Daarbij geldt een beperkt 'window of opportunity'. Op dit moment zijn er nog operators actief in Nederland met vergunningen voor kansrijke velden en is er de kennis om bij te kunnen dragen aan de ontwikkeling van een opslagproject. Er zijn slechts enkele operators die potentieel ook de interesse hebben om mee te werken aan de ontwikkeling van een demonstratieproject. Vanaf 2030 raken de meeste velden uitgeproduceerd, worden de velden permanent afgesloten en vertrekken de operators uit Nederland. Dit betekent dat er niet lang gewacht kan worden met de ontwikkeling van een demonstratieproject.

"A demonstration project is being considered for a location on land or possibly near shore. Several interesting candidate locations are being considered near the port of Rotterdam."

7.2 Spoor 2: Gasvelden op land of nabij de kust (near-shore)

De opslagvolumes in een gasveld zijn aanzienlijk groter dan in een caverne. Kennisontwikkeling en technologische innovaties zijn nodig voordat dergelijke opslagen ontwikkeld kunnen worden (zie Hoofdstuk3). Het duurt dan ook tien tot vijftien jaar voordat een commerciële ondergrondse waterstofopslag in een Nederlands gasveld operationeel kan zijn (mits aangetoond wordt dat dit technisch mogelijk en veilig is). Een commercieel opslagproject komt dus op zijn vroegst tussen 2035 en 2040 beschikbaar. Daarom is het van belang om nu te starten met de ontwikkeling van een **demonstratieproject**.

Ter voorbereiding zijn Nederlandse organisaties, waaronder TNO en EBN betrokken bij verschillende Europese trajecten zoals EUH2STARS en IEA-TCP Task42. Het doel is de ontwikkeling van operationele demonstratieprojecten voor opslag in lege gasvelden (TRL 8).45

Met een Nederlands demonstratieproject kan er voortgebouwd worden op deze kennis.

Ter voorbereiding voert EBN een verkenning uit welke gasvelden potentieel geschikt zijn en aan welke voorwaarden het demonstratieproject moet voldoen (EBN, 2025a). Nederland telt circa 140 potentieel geschikte gasvelden op land en op zee (EBN, 2025b). Voor een demonstratieproject wordt gedacht aan een locatie op land of mogelijk near-shore. Nabij de haven van Rotterdam zijn hiervoor enkele interessante kandidaatlocaties in beeld.

Daarbij geldt een beperkt 'window of opportunity'. Op dit moment zijn er nog operators actief in Nederland met vergunningen voor kansrijke velden en is er de kennis om bij te kunnen dragen aan de ontwikkeling van een opslagproject. Er zijn slechts enkele operators die potentieel ook de interesse hebben om mee te werken aan de ontwikkeling van een demonstratieproject. Vanaf 2030 raken de meeste velden uitgeproduceerd, worden de velden permanent afgesloten en vertrekken de operators uit Nederland. Dit betekent dat er niet lang gewacht kan worden met de ontwikkeling van een demonstratieproject.

"In preparation, EBN is conducting a study to identify potentially suitable gas fields and to determine the conditions the demonstration project must meet (EBN, 2025a). The Netherlands has approximately 140 potentially suitable gas fields on land and at sea (EBN, 2025b)."

STARTING POINTS SCREENING STUDY

- 570 fields
- · No discrimination between demonstration project, commercial project, onshore or offshore
- Three categories:
 - Red: probably not suitable for UHS: many risks/unknowns
 - Yellow: possibly not suitable for UHS: but risks/unknowns
 - Blue: possibly suitable for UHS
 3x yellow = red
- Field specific analysis needed for blue and yellow categories
- Criteria chosen because of relevance for UHS and data publicly available
 - Both technical and non-technical criteria

Table 1. Overview of All Criteria Used in Literature Site Selection Studies

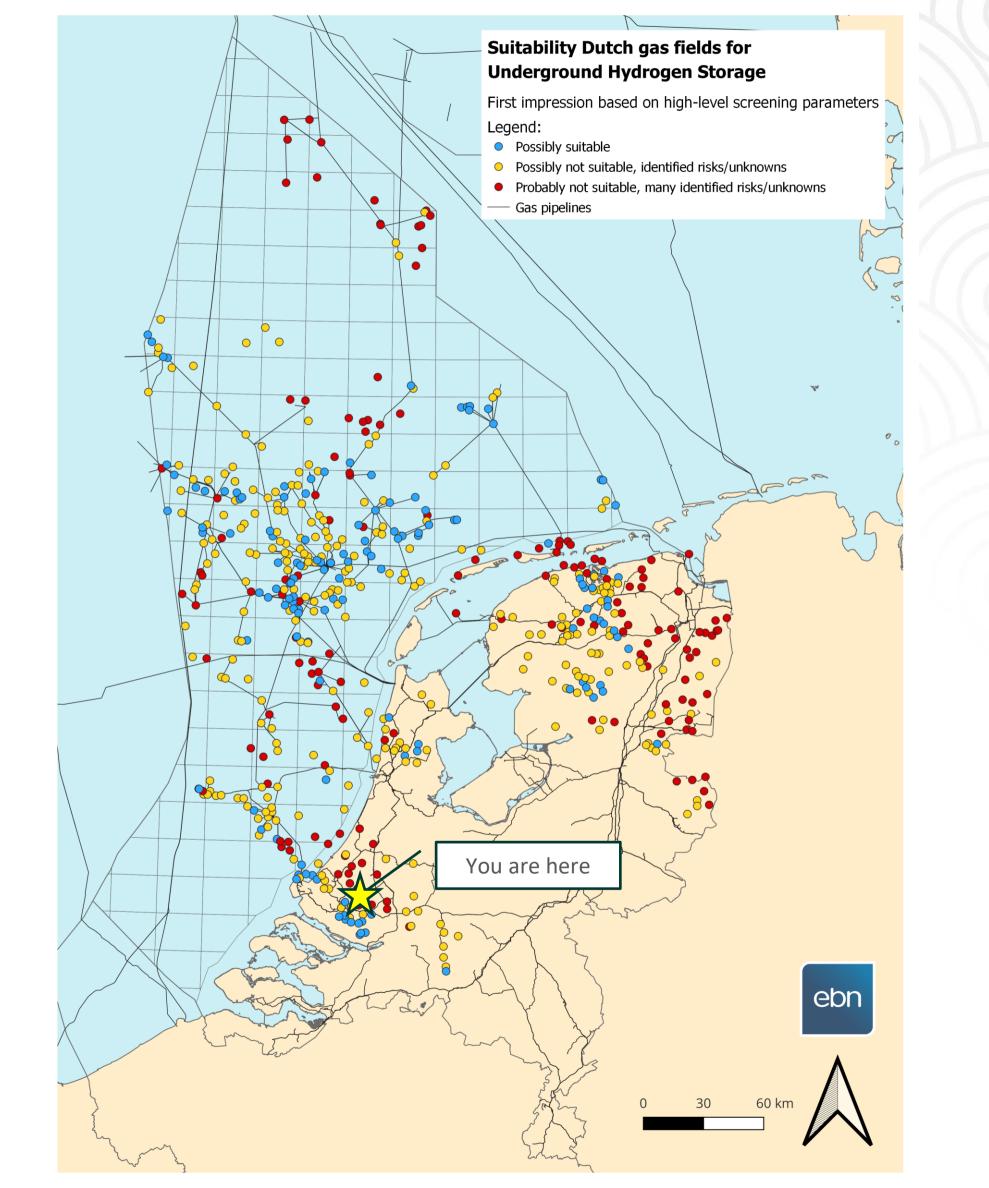
reservoir performance	location and techno-economics	geomechanical risks and containment
 pore volume/Storage capacity^{12,25-28,34,35,41} 	• labour ²⁵	 overburden rock lithology^{12,27,42}
 depth^{12,25-29,31,35,41,42,44} 	 proximity to suppliers and infrastructure^{2.5,28,34,35} 	 faults in proximity, compartmentalization^{26,27,29,31,34,41}
 pressure^{26,27,31,35,41,42} permeability^{25-29,31,35,41,42,44} 	 infrastructure availability^{25,34} storage cost^{25,35} 	 earthquakes/seismicity/tectonic activity
 porosity^{25-29,31,35,41,42,44} 	 initial investment^{25,35} 	• cap rock permeability ^{25,34}
permeability anisotropy ^{26,27} permeability anisotropy ^{26,27}	• regional risks ^{25,35}	 cap rock thickness^{26,27,29,31,42}
 permeability heterogeneity^{26,27} closure/spill point^{29,41} 	 legal restrictions^{25,34,41} social acceptance^{25,34,41} 	• secondary confining units ^{26,31}
• reservoir dip ^{26,27,31}	• job creation ²⁵	 overlying aquifers^{34,41} faults in overburden^{29,34}
• reservoir structure ^{25,28,31,41,42}	local culture ²⁵ mahian and requirement ^{27,28}	 seal lithology²⁹
 geothermal gradient^{26,31} stage of exploration¹² 	 cushion gas requirement^{27,28} facilities, pipelines, ports²⁷ 	• subsidence ⁴¹
 reservoir type (gas/oil/ aquifer)^{12,26,34,41} 	 sensitive areas, environment²⁷ 	 proven seal^{34,41} well density³⁴
• area ^{25,29,41}	 offshore/onshore^{28,34} 	
 thickness^{25,26,29,31,35,41,42,44} 	 spatial planning²⁹ 	
 vertical closure⁴² 		
 flow capacity^{28,34,44} 		
 pressure buildup⁴⁴ 		
 column height⁴⁴ 		
 (vertical) net gross^{28,29} 		
 max. H₂ well deliverability rate²⁸ 		

bio-geochemistry

- rock types and mineralogy^{27,31,34,41,42,44}
- knowledge of depositional environment⁴¹
- temperature 31,34,41,44
- pressure 26,27,31,41
- fluid characteristics, salinity, pH^{27,31,34,41,44}
- presence of microorganisms²⁷

From: Site Selection for Underground Hydrogen Storage in Porous Media: Critical Review and Outlook van Rooijen and Hajibeygi, 2025

PRAGMATIC APPROACH


Parameter is relevant for UHS

Parameter should be quantified

Criterium	Probably not suitable, many identified risks/unknowns	Possibly not suitable, identified risks/unknowns	Identified risk	# fields	Source
1. Hydrocarbon type	Oil	Oil with gas cap	Seal not proven for natural gas, complexity	45; 13	NLOG/EBN database
2. Volume (GIIP)	>15 Nbcm	>7,5 Nbcm	High costs	23; 74	EBN database
3. Seismicity	In the influence area Groningen gas field and aquifer	Within field	Earthquakes	28; 48	NLOG, KNMI
4. Geological stratigraphy characteristics	Upper North Sea and Chalk group		Leakage through seal or low permeability	17	NLOG
5. Waddenzee	Both UNESCO world heritage and Natura2000		No permits, sensitive area	16	
6. CO ₂ -storage	Porthos fields		Permanent CO ₂ -storage	3	EBN
7. Discovery year		<1976	Hydrogen leakage through old wells	129	NLOG/EBN database
8. Temperature		<70°C (depth<2000m)	Loss of hydrogen and/or formation of unwanted gas	100	NLOG
9. Development phase		Stranded Abandoned	Leakage through old wells and no accessibility	107 104	NLOG/EBN database
10. Natural H ₂ S		>3,6 ppm	High cleaning costs	16	NLOG, operators
11. Hydraulic fracking		Fracked wells in the field	Bad productivity	71	NLOG

140280160

Which field to choose for a demonstration project?

TOWARDS FIELD SELECTION

Three-staged approach towards a Dutch UHS demonstrator

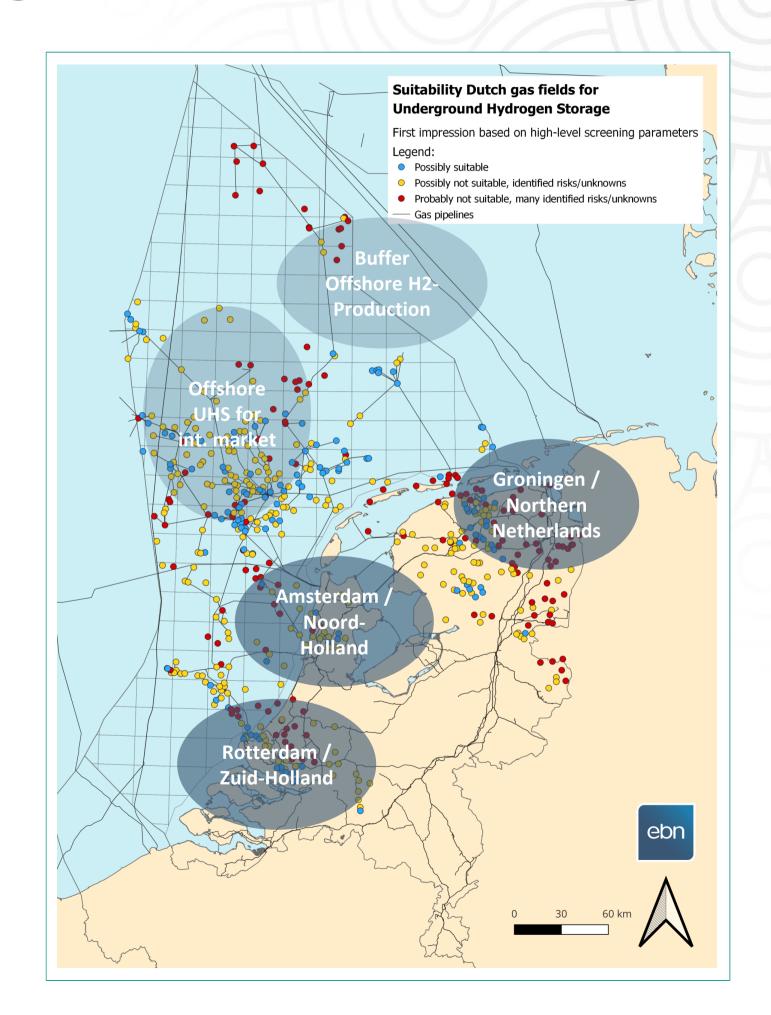
570 fields

1. Screening – Pre-selection

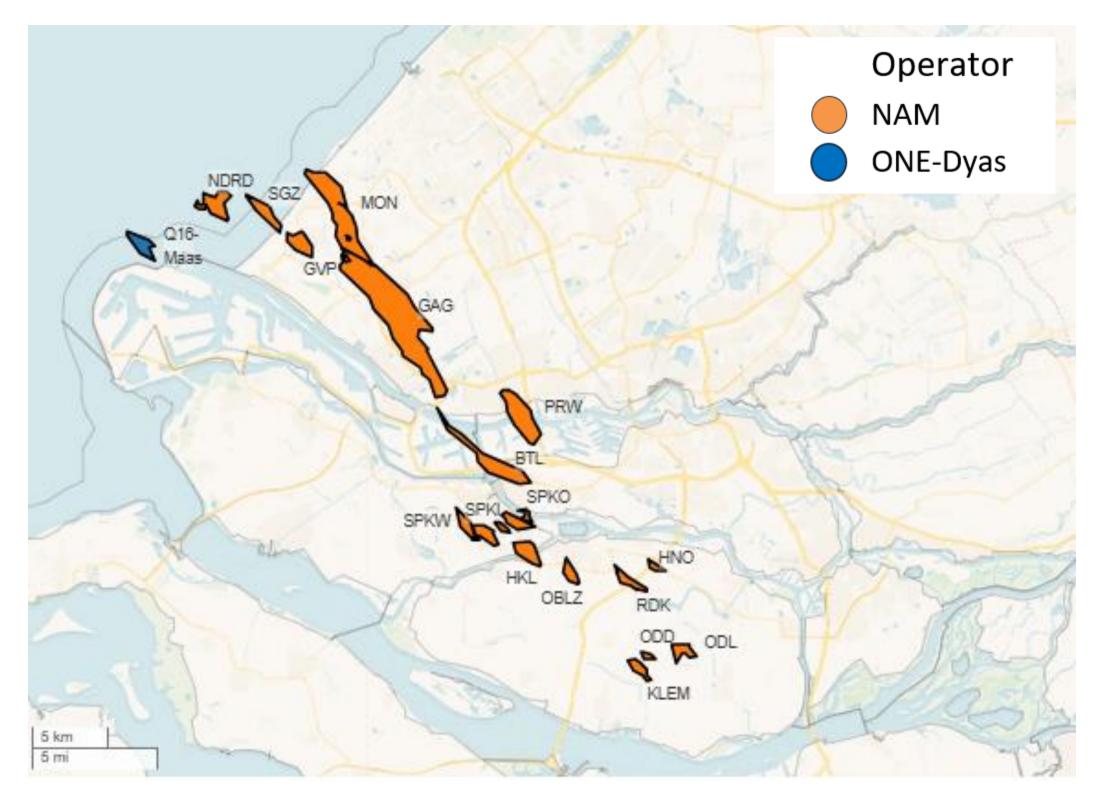
2. Boundary conditions from Verkenning

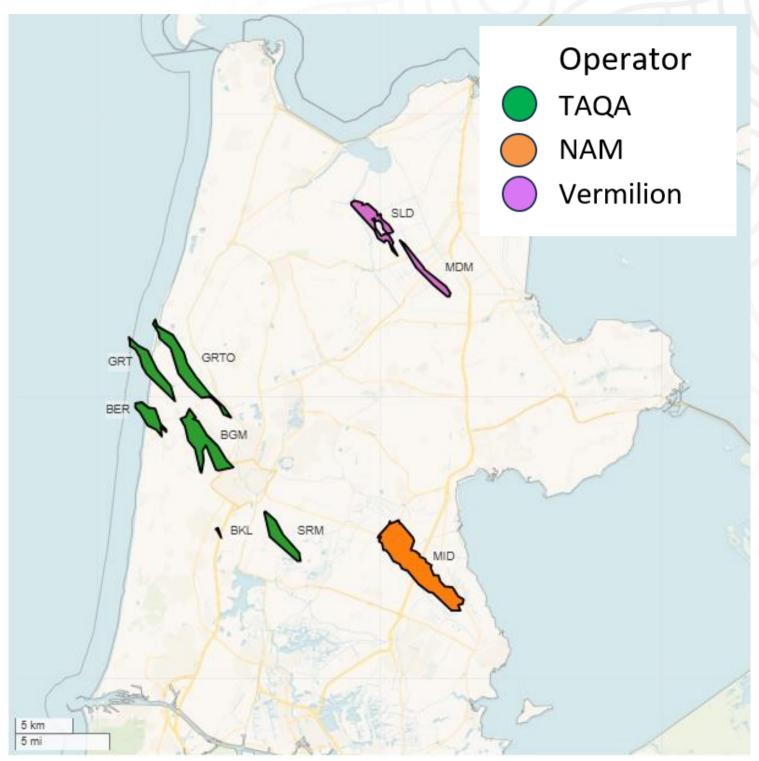
- 1. Gas field available close to H2-cluster
- 2. Clearly defined scope and intended learnings
- 3. Costs must be covered
- 4. Societal embedding and acceptance
- 5. Regulation and permitting
- 6. Cooperation and governance

More information: Verkenning randvoorwaarden UHS pilotproject in een Nederlands gasveld at www.ebn.nl/kennisbank

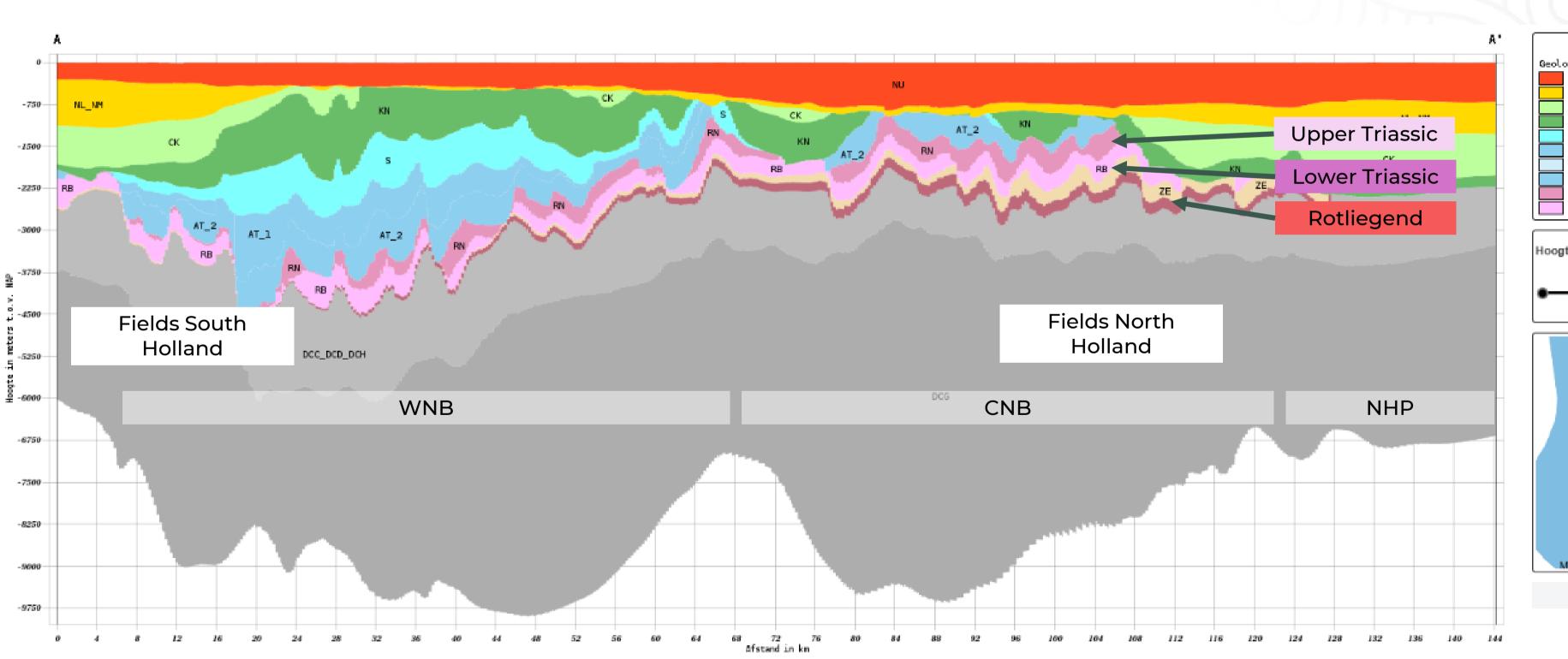


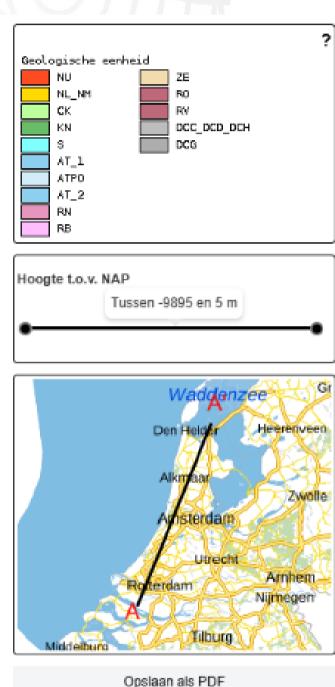
APPLYING CONCLUSIONS FROM VERKENNING


The demand for UHS in gas fields is expected to materialize first in the industry-rich western part of the Netherlands, in the provinces of North and South Holland.


Focus on:

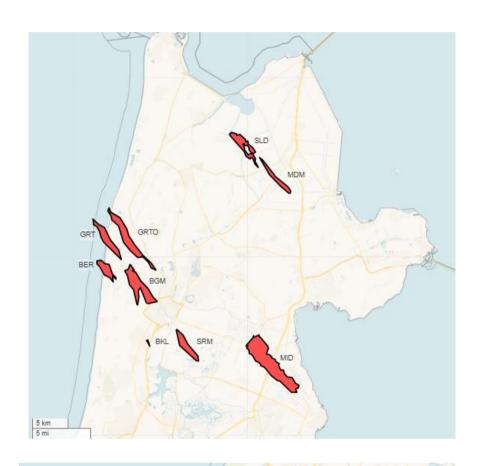
- 1. fields in North and South Holland provinces, onshore and near-shore
- 2. fields with availability before 2030
- 3. fields where having a demonstration-project operator in time is feasible

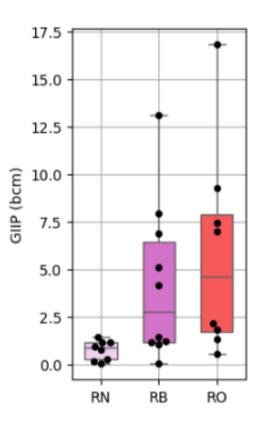


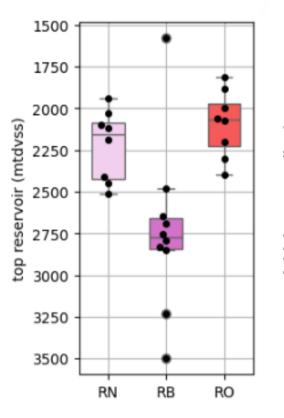


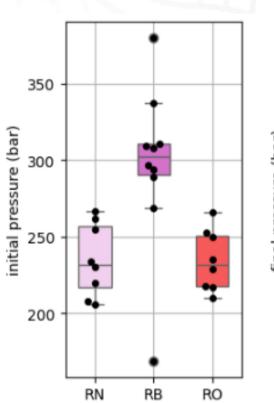
Blue and yellow fields \rightarrow no carbonates, shallow, gas cap, low productivity \rightarrow 27 fields

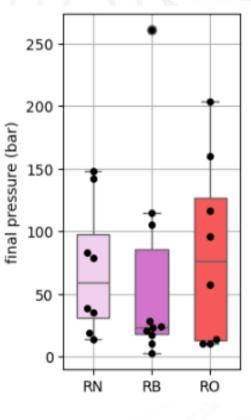
CROSS-SECTION

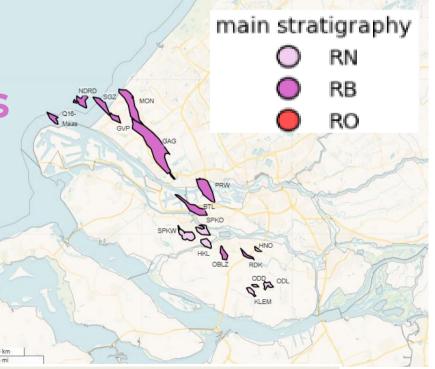


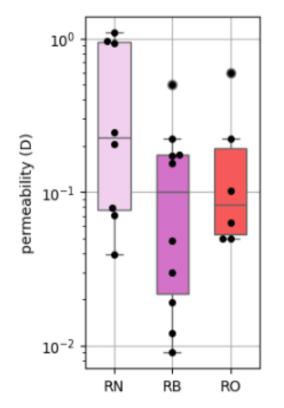


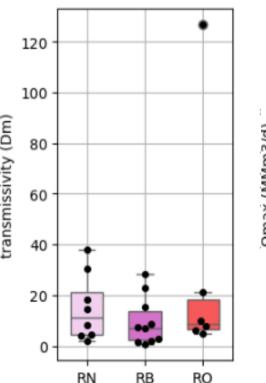


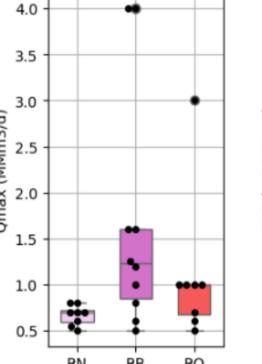

CHARACTERIZATION FIELDS IN NORTH HOLLAND AND SOUTH HOLLAND

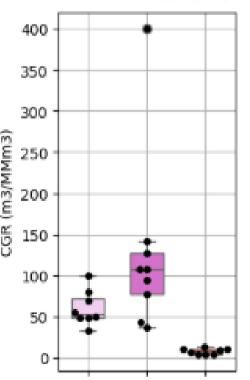

Rotliegend fields








Middle Bunter fields


Upper Bunter fields

More information during talk Germonda Reijnen on Thursday 11:30-11:50

NEXT STEPS

- A couple of gas field operators interested
- Conversations started with relevant stakeholders
- Next year: feasibility study for one field, potentially high-level studies for several other fields

1. Screening – Pre-selection

2. Boundary conditions from Verkenning

3. Field specific analysis

MAIN TAKE AWAYS

- Many gas fields in the Dutch subsurface technically suitable for UHS
- Other parameters (demand, supply, infrastructure, social and political support)
 determine the most suitable locations for a demonstration project
- Dutch ministry KGG and other partners involved are dedicated to have a demonstration project of UHS in a gas field around 2030

"A demonstration project is being considered for a location on land or possibly near shore. Several interesting candidate locations are being considered near the port of Rotterdam."