

Reaching out for Success

Michiel Dekker

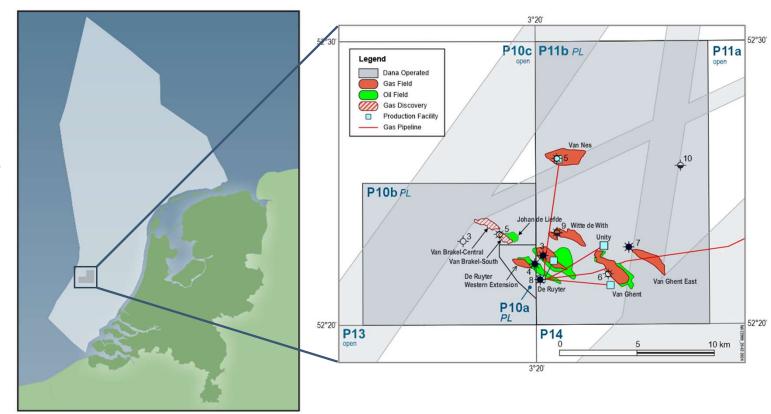
Reaching out for Success P11-13 Extended Reach Well

Michiel Dekker, Mike Hall, Ed Appleton, Erik Koppe & Hans van Marle

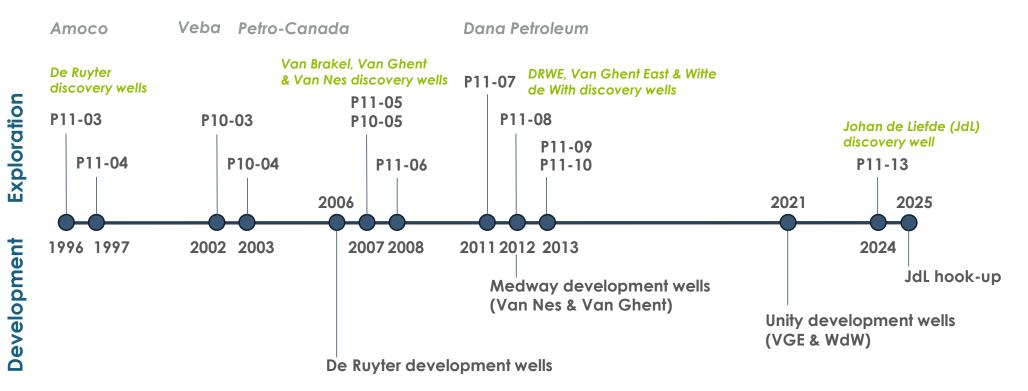
Content

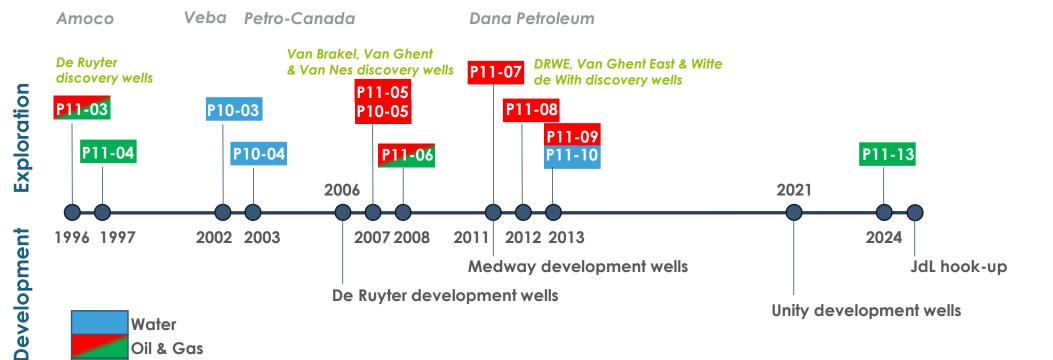
- 1 Setting the scene
- 2 ERD well
- 3 Geological success
- 4 Follow-up

Borr Prospector 1 jack-up rig being positioned at P11 De Ruyter platform


Setting the Scene

Where are we?


- Southern North Sea
- Offshore Netherlands
- P11B-De Ruyter platform surrounded by several producing and depleted fields and one undeveloped gas discovery



A bit of history

A sustainable gas system

Oil Gas

Extended Reach

Why extended reach?

Crest of prospect was located 3.7 km away from the De Ruyter facility

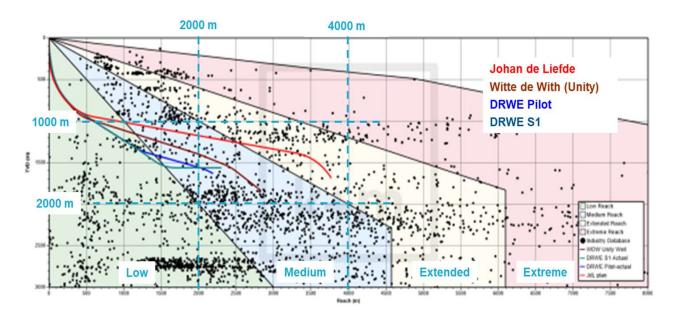
Options were (1) to drill from a monopod/subsea location close to the prospect or (2) to drill an ERD well from the De Ruyter platform

ERD well chosen

- Bruine Bank Natura 2000 area
- ☐ Fast tie-in to existing facilities meaning significantly faster first hydrocarbons

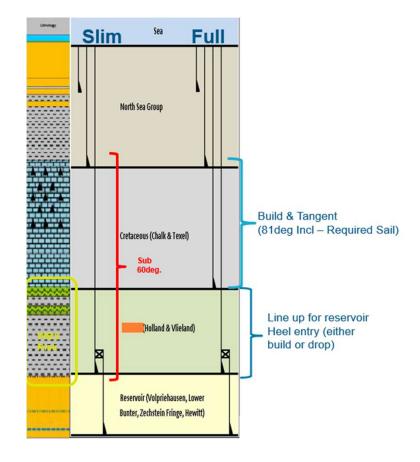
Drilled by Borr Prospector 1 jack-up rig from December 2024 to March 2025 from the P11 De Ruyter production platform

Borr Prospector 1 jack-up rig at P11 De Ruyter platform



Industry Extended Reach Wells vs P11 Wells

- ERD Ratio is defined as Horizontal Displacement of a well, divided by its True Vertical Depth
- Used to categorize and compare directional complexity of highly deviated wells in normalized fashion
- ERD Ratio of Johan de Liefde is 2.34
- While highly deviated wells in SNS are not uncommon, most do not classify as ERD wells

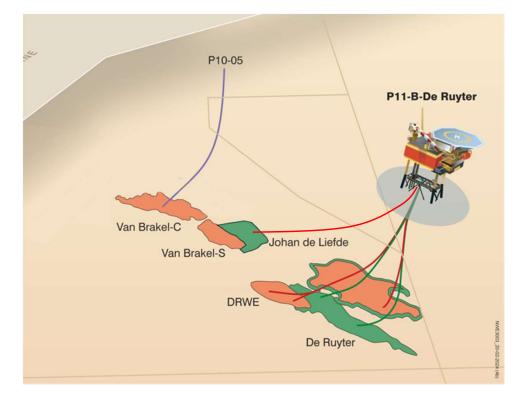


Casing Seat Selection

November 20th, 2025

10th Dutch Exploration Day

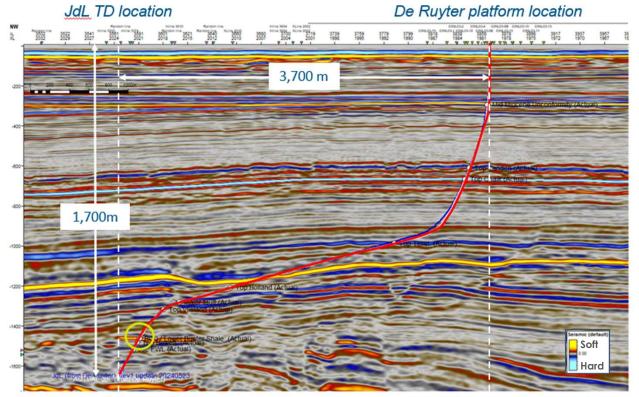
- Full casing architecture proposed for JdL due to requirements for high sail angle through Cretaceous (82deg) then drop for reservoir entry, (50deg) (i.e. build, hold, drop, hold well path profile)
- Vertical / Low Step out wells have ability to drill / case off entire Cretaceous / Jurassic Interval. Not the case in JdL
- □ Casing design driven by:
 - Well bore stability curves defining drill ahead mud weights not pore pressure
 - T&D Friction factors needed to get shoes to the requisite depths
- Wellbore Stability of Holland & Vlieland require mud weights that encroach / exceed Cretaceous Chalk's Shmin values at higher sail angle (>1.43 sg static mud weights)


A sustainable gas system

Johan de Liefde ERD Well Characteristics

Main challenges and risks that were successfully overcome:

- Tight rig positioning envelope at De Ruyter platform
- Congestion by existing wells underneath platform with high risk of well bore collision
- High torque and drag while drilling long sections at high inclination
- Building inclination with WBM through soft Chalk
- Stringent hole cleaning requirements at limits of typical SNS jack-up capabilities
- Bore hole instability in highly reactive shales
- Zonal isolation of short 4 1/2" liner cement column
- Penetrated the JdL reservoir within 1m of planned target location, discovered oil
- At short notice, successfully reconfigured the completion for the JdL oil discovery
- ☐ Great cooperation between Dana, Borr, Petrofac, and all others involved



Geological Succes

Well vs seismic

- Shallow tops came in close to prognosis
- Top Holland came in slightly deeper
- Major fault was close to prognosis
- Top Vlieland came in shallower
- Base Cretaceous Unconformity & reservoir came in 11-12m deeper than prognosed

seismic line along well trajectory

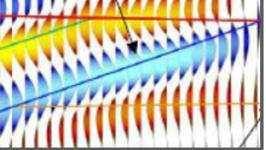
Reservoir

November 20th, 2025

10th Dutch Exploration Day

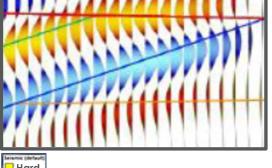
- ☐ Oil filled Upper & Middle Hewett ("Nederweert")
- Lower Hewett ("Z4 Randzandsteen") & Z3 sandstone water bearing
- Upper Hewett composed of high porosity, high permeability sand
- Middle Hewett composed of two shale zones and one high porosity, high permeability sand
- Pressure data confirmed FWL within1m of uncertainty

Why was JdL expected to be gas-bearing pre-drill? (1)

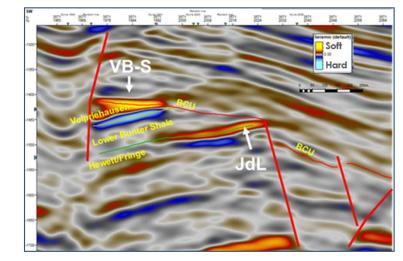


- ☐ Historical "chase" for oil was not successful and encountered mostly gas
- Seismic amplitudes anomalies in De Ruyter area typically suggestive of gas
 - Of 7 drilled anomalies in DR area, 6 were gas discoveries; this includes the Van Nes gas field (Hewett reservoir)
 - De Ruyter oil in P11-04 is the exception: modest amplitude anomaly Top Hewett
- □ Pre-drill geophysical (QI) study of JdL by DUG could not conclusively distinguish oil from gas on Top Hewett

• Both gas and oil were modelled as possible outcomes showing brighter reflectivity at Top Hewett level for gas to

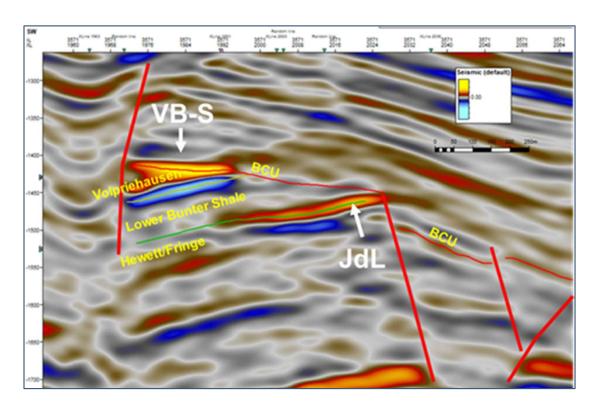

more moderate for oil

Modelling *gas* saturated case



A sustainable **gas system**

Modelling oil saturated case



Why was JdL expected to be gas-bearing pre-drill? (2)

- Very bright amplitude response at Van Brakel Central & South (Volpriehausen reservoir) – proven gas
- Nearest down-dip accumulation (Witte de With) is also gas
- □ Significant brighter amplitude anomaly compared to known oil in De Ruyter Hewett
- ☐ The oil case wasn't ignored, but given a lower chance of occurrence
- Well results show LBS sealing for oil, not sealing for gas

Well clean-up

- □ Constrained cleanup completed across rig Well quickly cleaned up to 100% light oil no formation water produced
- ☐ High productivity well with stable pressures
- Most of 190 Sm3 oil produced taken back to De Ruyter platform
- Unable to produce well at higher rate due to limitations of well cleanup test spread
- Surface samples acquired for PVT

Follow-up

JdL follow-up

Many prospects still present in P10b/P11b

- ☐ Three JdL-look-a-like prospects nearby
 - Look-a-like E
 - similar volume to JdL
 - similar distance to De Ruyter as JdL
 - less clear DHI's
 - Look-a-like D (JdL North)
 - Bigger than JdL
 - likely part of the same field as JdL, but different compartments
 - Look-a-like C
 - significantly bigger than JdL
 - further away from De Ruyter
 - · Located below a shipping lane

