

# 3D time-lapse seismic monitoring of the pilot CO<sub>2</sub> storage site at Ketzin, Germany





Monika Ivandic, Christopher Juhlin and Fengjiao Zhang Department of Earth Sciences Uppsala University, Sweden



### **Outline**

- Ketzin CO<sub>2</sub> pilot storage site
- 4D seismic monitoring at Ketzin
- Time-lapse signature
- CO<sub>2</sub> plume development and migration
- Conclusions



# Ketzin CO<sub>2</sub> pilot storage site

#### THE MAIN OBJECTIVES:

- ☐ improve the scientific understanding of the geological storage of CO₂ in deep saline formations
- □ study the subsurface processes of the CO₂ injection and distribution



Areal view of the Ketzin site and its facilities.

**Start/End of injection**: June 2008/August 2013 (food-grade CO<sub>2</sub>; Linde AG)



# Ketzin CO<sub>2</sub> pilot storage site

- □ CO<sub>2</sub> injected into the upper Triassic Stuttgart Formation.
- Reservoir depth is approximately 630-650 m below sea level,9-20 m thick and effective porosities in the range of 20-25%.
- Reservoir is heterogeneous, consisting of sandy channel facies mixed with muddy flood plain deposits





# Ketzin CO<sub>2</sub> pilot storage site

#### **Monitoring**

- Geochemical
- Biological
- Geoelectrical
- <u>Seismic (active):</u>
   Crosshole
   Surface-Downhole (VSP, MSP)
   Surface (2D, 3D)
- Passive seismic
- Temperature
- Fluid flow modeling





An overview on the time history of the seismic measurements performed at the site









after Huang et al. (2016)

Juhlin et al. (2007);

**3D Baseline 2005:** 41 Templates, ~14km<sup>2</sup>

**3D Repeat 2009:** ~22 kt of CO<sub>2</sub>, 20 templates, ~7 km<sup>2</sup>

**3D Repeat 2012:**  $\sim$  61 kt of  $CO_2$ , 31 templates,  $\sim$ 9.5 km<sup>2</sup>

**3D Repeat 2015:** ~ 67 kt of CO<sub>2</sub>, 33 templates, ~10 km<sup>2</sup>

Due to logistics such as roads, villages, nature reserves, etc., it was not possible to have a regular geometry











#### Repeatability of the 4D seismic data



Dislocated receiver stations of totally 4104 in the 2012 survey





| Step | Processing workflow and parameters (Globe Caritas)                                                                                     |
|------|----------------------------------------------------------------------------------------------------------------------------------------|
| 1    | Read raw SEGD data                                                                                                                     |
| 2    | Vertical diversity stack                                                                                                               |
| 3    | Bulk static shift (correction for instrument delay)                                                                                    |
| 4    | Extract and apply geometry                                                                                                             |
| 5    | Trace editing                                                                                                                          |
| 6    | Notch filter: 50 Hz                                                                                                                    |
| 7    | Spherical divergence correction                                                                                                        |
| 8    | Band-pass filter: 7-14-120-200 Hz                                                                                                      |
| 9    | Surface consistent deconvolution: 120 ms, gap 16 ms, white noise 0.1%                                                                  |
| 10   | Ground roll mute                                                                                                                       |
| 11   | Spectral equalization: 20-35-80-110 Hz                                                                                                 |
| 12   | Band-pass filter: 0-300 ms: 15-30-75-115 Hz; 350-570 ms:                                                                               |
|      | 14-28-70-110 Hz; 620-1000 ms: 12-25-60-95 Hz                                                                                           |
| 13   | Zero-phase filter: converts an average near minimum-phase wavelet<br>of the weight drop source to a wavelet being closer to zero phase |
| 14   | Time-lapse difference static correction (with reference to baseline survey)                                                            |
| 15   | Trace balance using data window                                                                                                        |
| 16   | NMO                                                                                                                                    |
| 17   | Stack                                                                                                                                  |
| 18   | Trace balance                                                                                                                          |
| 19   | FX-Decon: inline and crossline directions                                                                                              |
| 20   | Trace balance                                                                                                                          |
| 21   | Migration: 3D FD using smoothed stacking velocities                                                                                    |





#### Crossline 1105 crossing nearly over the top of Ketzin anticline



The 3D survey imaged a sequence of clear reflections from approximately 150 ms down to 900 ms two-way-time. The near-Base Tertiary (T1) and Top Weser (K2) horizons are well defined throughout the entire survey area. Reduced image quality of near-surface structures was observed where residential areas, access restrictions at the injection site, and nature reserves constituted obstacles in the acquisition geometry.



2<sup>nd</sup> repeat - Final stacked and migrated seismic sections – Crossline 1098





2<sup>nd</sup> repeat - Final stacked and migrated seismic sections – Inline 1167





# Time-lapse signature





### CO<sub>2</sub> plume development and migration





### Conclusions

- The 3D data quality is fairly good and significant seismic events can be seen down to 1 sec.
- Seismic time-lapse observations performed after one and four years in the CO<sub>2</sub> injection phase and one in the post-injection phase imaged a migration and development of the CO<sub>2</sub> plume.
- Refined seismic processing provided geophysical images for detailed volumetric analysis and CO<sub>2</sub> detection limits
- This study shows that high-quality 3D seismic data required for CO<sub>2</sub> injection monitoring can be acquired using a small crew, single geophones and a simple weight drop source.
- □ This observation further implies that smaller seismic contractors could be used for monitoring of the future sequestration sites, opening up new opportunities for geophysicists.