SHEARWATER

Shearwater GeoServices

Increasing survey productivity and enhancing data quality

February 2017

Steve Hepburn – Acquisition Geophysicist

Shearwater GeoServices - Full Geophysical Service Company

Modern, Powerful Fleet

- Modern 3D Vessels
- Low Cost Base
- Global Operational Experience
- Organisations of Shearwater & GCR Shipping experienced with operating these assets
- Increased Productivity through powerful solutions and wide tow configurations

Full Processing & Imaging Capabilities

- UK, Houston
- Processing & Re-Processing
- Time & Depth Imaging
- SHarp Broadband
- Dedicated in-house R&D
- Global Experience

2D & 3D MC

- Majority of ex Dolphin Library sold to 3rd parties
- Intend to build an MC business line, based on partnerships, potential consolidation, and organic growth given high prefunding

Land & Marine Seismic Processing Software

- QC, Time & Depth Imaging
- Interactive Processing
- Advanced 2D & 3D Visualization
- Developer's Environment
- Broadband Technology

Shearwater Fleet and Towed Assets

Built: 2011 Seismic Configuration: Up to 12 streamers Bollard Pull: Approx. 200 T

- 360 km of streamer systems from Sercel in good condition and with adequate spares
- 2 streamer sets currently deployed on Polar Duchess and Polar Marquis respectively

Polar Marquis

Built: Seismic Configuration: Bollard Pull:

2000/2014 Up to 16 streamers Approx. 200 Tonnes

Polar Duke

Seismic Configuration: Bollard Pull:

2010 Up to 12 streamers Approx. 200 T

Processing & Imaging: Overview

- Time and depth imaging
 - 3D SRME and 3D SWME
 - TTI Kirchhoff, Beam, RTM & tomography
 - Industry-leading broadband de-bubble using the near field hydrophones
 - Dual or triple source de-blending
 - Marine and land
- Centres in the UK and USA
 - 48 geophysicists
 - 384 nodes, 7808 cores, 2.5PB disk
 - Proven use of the cloud for peak capacity
 - Dedicated in-house R&D
- Staff and software on-board 3rd party vessels
- New centre established in India

OpenCPS Software Sales

- Licensed by E&P companies including super major, contractors & academia
- Land and Marine
- RTQC, Time & Depth
 - 3D SRME, Hi-res Radon
 - 5D regularisation
 - 2C converted wave binning
 - Azimuthal AVO and velocity analysis
 - TTI Kirchhoff, RTM & tomography
 - Demonstrated well tools for model building at SEG
- Interactive Processing
 - Change parameters and flow in real time
- Advanced 2D and 3D Visualization
- Developer's Environment
- Parallel Processing and Job Management

Content

- Triple source acquisition
- Shot overlap removal
- Broadband Source
- Streamer de-ghosting
- Near field hydrophones for de-signature and de-ghosting

Content

• Triple Source Acquisition

Modelling Parameters

2965 cubic-inch Bolt gun Array

 Source Depth (m) 	7.00
--------------------------------------	------

- Number of Gun Strings
- Total Number of Guns 20
- Spare Guns 2
- Type of Guns: Bolt 1500 LL and 1900 LLXT
- String Length (m) 15.00
- String Separation (m) 7.5
- Temperature 6°C
- Sound Velocity 1474.9 m/s

Array Diagram - 2965

Array: 2965D70P2000S75

Plotted by Nucleus+ (2.4.0), Masomo+ (1.8.0). Date :2017/2/14 20:14

Source Signature –SEAL 0/12 – 200/370

Peak-Peak (bar-m) 93.0 P/B 22.8

Farfield signature: 2965D70P2000S75T6S0200

 Distance: 9000 m
 Primary: 46.7 bar m
 Source depth: 7.00 m
 Pressure: 2000 psi
 Water velocity: 1474.9 m/s
 Period (+/-): 82.2/145.0 msec

 Dip: 0 deg
 Peak: peak: 93.0 bar m
 Streamer depth: NA
 Ghost strength: -1.00
 Geom. spr.: 2.00

 Azimuth: 0 deg
 P/B ratio: 22.8
 Volume: 2965 cu.in
 Water temp.: 6.00 C
 Filter: Sercel SEAL mp_0/12-200/370

Coverage and crossline spacing 10 x 200 x 3 sources Crossline spacing 33.33m

Coverage and crossline spacing 12 x 150 x 3 sources

Crossline spacing 25m

Coverage and crossline spacing 12 x 75 x 3 sources

Crossline spacing 12.5 m

12.5m crossine sampling comparison

All surveys modelled with 10% standby – 5% TD – 12% infill

Dual source acquisition Streamer spacing 50m Total duration 46 days

Triple source acquisition Streamer spacing 75m Total duration 30 Days

25m crossine sampling comparison

All surveys modelled with 10% standby – 5% TD – 12% infill

Dual source acquisition Streamer spacing 100m Total duration 24 days

Triple source acquisition Streamer spacing 150m Total duration 18 days

Content

Shot Overlap Removal

Triple source

- Triple source with approximately 5s spacing
- Natural dither due to vessel motion
- Some residual shot energy in the shallow

Original shot

Overlapping shot

Deblended shot

Original shot

Raw Stack

Original stack

De-blended stack

Deep zoom of blended stack

Deep zoom of original stack

Deep zoom of de-blended stack

Shallow zoom of original stack

Shallow zoom of de-blended stack

Summary

- Triple source causes overlapping shots due to the reduced shot point interval
- De-blending is effective with natural dither
 - Shots are well separated by de-blending
 - Shallow stack not badly effected by residual shot energy from previous shot.
 - Deep stack well separated by de-blending to show underlying events

Content

• Broadband Source

Modelling Parameters

4040 cubic-inch tuned Broadband Bolt gun Array

•	Source Depths (m)	6m & 9 m (average 7.7 m)
---	-------------------	--------------------------

Firing Delays
 Yes (9 m strings fired with 2 msec delay)

Number of Gun Strings

Total Number of Guns
 28

• Type of Guns Bolt 1900 LLXT (40 – 150 cu in)

Bolt 1500 LL (250 & 300 cu in)

• String Length (m) 15

String Separation (m)

• Temperature (°C) 29

Sound Velocity (m/sec) 1543.7

• Nucleus Version 2.4.0

Array Diagram

Source Signatures –SEAL 0/12 – 200/370

Peak-Peak (bar-m) 93.8

P/B 23.6

Content

• Streamer phase shift De-ghosting using rough sea estimation.

Sample shot records – slanted 12-28m cable (2m/km)

Sample shot record-close-up

Sea-bottom reflection – static NMO

Sample shot records close-up

SHEARW/ATER

De-ghosting – calm sea

SHEARWATER

De-ghosting – rough sea

SHEARWATER

Conventional – 10m cable

SHarp – slanted 10-20m cable (2m/km)

Conventional

SHarp – phase-shift de-ghosting

Southern End

Northern End

Content

 Near field hydrophones for directional de-signature and de-bubble

Introduction

- Accurate de-bubble is important for broadband results
- Directional de-signature compensates for the variation in signature with takeoff angle

Example of variation of source amplitude as a function of in-line take-off angle and frequency

Frequency / Hz

- Near field hydrophones can provide an improved solution
- Compute a set of 'notional' signatures from NFH one for each element
 - Derived by LSQ taking into account bubble motion, ghosts and water-bottom reflections
- Compute far-field signature from notional signatures as a function of take-off angle
- Option available to do shot-by-shot de-signature on common receiver gathers

SHEARW/ATER

Effect of directional de-signature

- Benefits
 - All frequency components in phase across angles/offsets
 - increasingly important for broadband processing over 6 octaves
 - Improved accuracy of AVO / AVA effects
- Includes
 - Directional de-signature of the wavelet
 - De-bubble
 - Source-side de-ghosting
 - Zero-phasing/wavelet-matching
- Signature obtained from either
 - Seismic data nr channel wavelet
 - Modelling e.g. Nucleus

Synthetic example showing how de-signature aligns phase over all frequencies

The near-field hydrophone (NFH) records
SHEARW/ATER

Time dependent system

Significant change in path length from source to receiver on timescale of interest

sources -

Updating - nearest-neighbour vs. adjoint

No bubble motion iterative time domain

With bubble motion iterative time domain

With bubble motion adjoint - least-squares

Results - directional far-field signatures

SHEARW/ATER

bubble motion

North Sea data - directional de-signature input gather

Bubble oscillations

North Sea data - directional de-signature modelled signatures

• Residual is still present

North Sea data - directional de-signature NFH signatures

Residual is reduced

Directional designature - comparison of spectra

Results - shot-by-shot depths and reflection coefficients

North Sea data - migrated section

directional, modelled signatures

200 ms

directional, NFH-derived signatures

