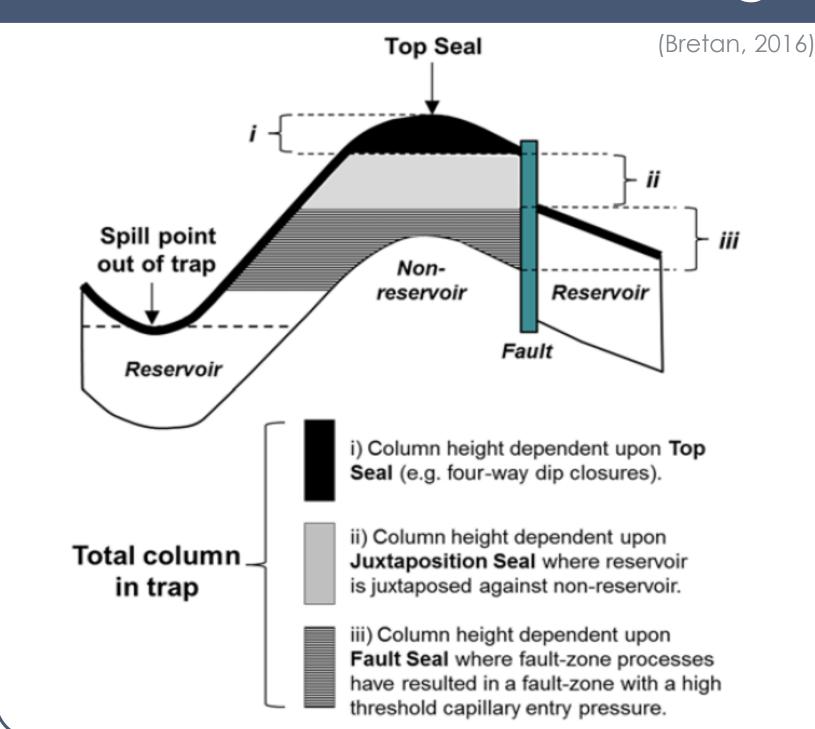
Predicting properties of faults in sand-shale sequences: case studies from the Rotliegend, Dutch Southern North Sea area

A. Silvius^{1, 3}, K. van Ojik¹, Y. Kremer² & Z. Shipton²

- 1: exploration@ebn.nl, EBN, Daalsesingel 1, 3511 SV Utrecht, Netherlands
- 2: Department of Civil and Environmental Engineering, University of Strathclyde, 75 Montrose Street, Glasgow, G11XJ, United Kingdom
- 3: Department of Earth Sciences, Utrecht University, Heidelberglaan 2, 3584 CS Utrecht, Netherlands

Introduction

Understanding fault sealing and permeability is key for evaluating reservoir compartmentalization, structural trap integrity and hydrocarbon migration pathways.

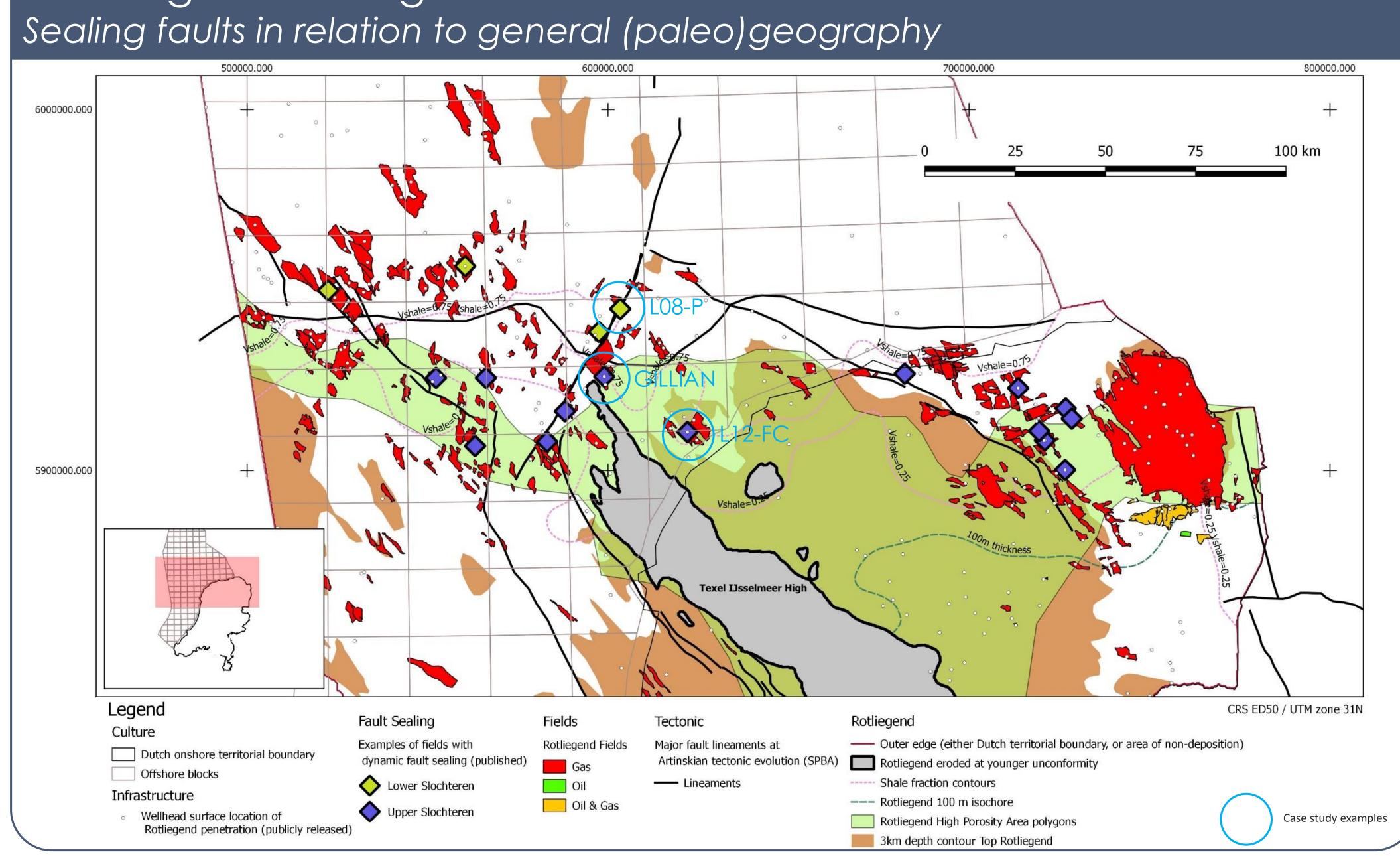

Existing fault seal evaluation tools (e.g. SGR, SSF, CSP) are reliable in conditional circumstances and do not usually quantify their inherent level of uncertainty. Current algorithms, particularly those focusing on clay smearing, depend largely on published calibrations to e.g. shallow marine sand-shale sequences from the Brent Province [5] or laboratory measurements [6]. Properties and conditions of Permian and Triassic mixed fluvial/Aeolian rocks are not necessarily honored by these existing fault seal algorithms. A collaborative Msc. project evaluates fault sealing properties in Rotliegend fields based on fault fabric and architecture.

Project aim

Predicting fault sealing and fault permeability by incorporating fault fabric and architecture.

Industry workflows may be improved by applying a process-based fault characterization.

Definition of fault sealing



Fault sealing occurs where fault-zone processes have resulted in a fault-zone high threshold capillary entry pressure. This process is defined at an where reservoir-against-reservoir juxtaposition takes place.

Hydrocarbon leakage through a waterwet fault-zone occurs when the excess (buoyancy) pressure generated by the hydrocarbon column exceeds capillary threshold pressure of the faultzone material.

Notional empirical relations Fault permeability in mD (ambient) vs. Clay content in % Fisher (Unpublished Data) Fault rock type Cataclastic Cataclastic and Cemented Cemented, Cataclastic and clay smear fault rocks 2 4382,84 Manzocchi et al. 1999, fault throw 10m "Classical" functions, publicly available in e.g. Petrel^{© Schlumberger} in relation to well core rock material from the Rotliegend, Southern North Sea.

Catalogue - Rotliegend fields

Methodology

Clay content in %

The project is carried out by firstly building catalogue of show-case examples illustrating various aspects of fault sealing (see image). Including, but not limited to, faults acting as a barrier or baffle to pressure communication and/or hydrocarbon flow over the geological and/or production timescale, fault collapse and juxtaposition sealing.

A better understanding of fault sealing and fault permeability may be achieved by reviewing show-case examples from the Permian a/o Triassic in detail. The collection of key parameters such as burial depth, host rock clay content, sand and shale bed thickness, fault geometry etc., will allow comparison of fault rock type and associated sealing potential between the outcrop based fault characterization and more commonly used predictors such as SGR.

Process-based fault characterization Flowchart

Flowchart for process-based characterization of fault sealing and fault permeability, based on outcrop studies.

- 1) Identify shale content and determine the type of fault deformation.
- 2) Asses the degree of cementation (burial and post-faulting temperature)
- 3) Progressive deformation

questions arising:

- Is the input data to the flowchart relevant for Rotliegend cataclasites/fault rocks?
- What about the scalability of outcrop vs. subsurface data?
- What are the levels of uncertainty and sensitivity?

(Based on Kremer et al., in press, 2017) SHALE **CLEAN** SST MIX LOW N/G HIGH N/G **BURIAL AND TEMPERATURES** CEMENTATION PROGRESSIVE DEFORMATION REACTIVATION

Deliverables & Timeline

Catalogue of proven/likely/probable examples of static/dynamic fault November sealing, selection of three candidates December for detailed analysis. December Database with fault geometry January properties February Improved (calibrated) process-based April characterization of fault sealing Masterthesis report May