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Understanding fault sealing and permeabillity is key for evaluating reservoir compartmentalization, structural trap| | Predicting fault  sealing
INntfegrity and hydrocarbon migration pathways. and fault permeabillity by
incorporating fault fabric
Existing fault seal evaluation tools (e.g. SGR, SSF, CSP) are reliable in conditional circumstances and do not usually | | and architecture.

guantity their inherent level of uncertainty. Current algorithms, particularly those focusing on clay smearing, depend
largely on published calibrations to e.g. shallow marine sand-shale sequences from the Brent Province [5] or| | Industry workflows may be
laboratory measurements [6]. Properties and conditions of Permian and Triassic mixed fluvial/Aeolian rocks are not| | improved by applying a
necessarily honored by these existing fault seal algorithms. A collaborative Msc. project evaluates fault sealing| | process-based fault
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