Observations from systematic depth conversion reviews: biased depth estimates and the impact on the drilling portfolio

Guido Hoetz EBN B.V. Utrecht, The Netherlands

ebn

contents

- Background
- Depthing matters
- Typical depth conversion workflow
- Depth errors & bias
- Explaining the bias
- Conclusions

About EBN

- EBN invests in exploration and production of natural gas and oil on behalf of the Dutch State
- Number of employees: 81 (2016)
- Participates in nearly all dutch upstream (~40% share)
- Production: ~500k boe/d (2014)
- All profits of EBN are transferred to Dutch government: € 4.9 bln (2014)
- Access to most data

ackground

About EBN

- EBN invests in exploration and production of natural gas and oil on behalf of the Dutch State
- Number of employees: 81 (2016)
- Participates in nearly all dutch upstream (~40% share)
- Production: ~500k boe/d (2014)
- All profits of EBN are transferred to Dutch government: € 4.9 bln (2014)
- Access to most data
- 140,000 km2 3D seismic
- > 5,000 wells

~40 new wells annually do test seismic technology in NL

Drilling activity in the Netherlands

Depthing matters...

More accurate description of subsurface allows better project risking/ ranking and execution (*including better & safer wells!*)

Depth prognosis is a key parameter

Impact depth conversion: situation dependent

Typical exploration case

If entire structure deep to prognosis: closure unaffected & well still successful

Typical development case

If structure locally deep to prognosis and contact fixed: HC column in well reduced

Typical Time-Depth conversion workflow (1)

- 3D PreSDM data
- Interpretation on timedata
- Layercake approach
- Velocity model based on well data and pro-velocities
- Frequent use of V0,K velocity parametrisation (per layer)

pull-up effect

Typical Time-Depth conversion workflow (2)

Depth prediction review

• 253 recent wells (all operators)

 Comparing prognosed depth vs actual depth: at target level and overburden levels

• Analyse depth errors

Depth errors: example A

depth prognosis vs. actual

Conclusion: velocity layer 2 underestimated: error propagates down, but within range

Depth errors: example B

depth prognosis vs. actual

Conclusion: velocity layer 6 (*evaporites*) underestimated: outside range!

Depth errors (target level)

Why biased estimates? Seismic maps contain noise

Why biased estimates? Random sampling: no bias

Why biased estimates? Selective sampling*: bias

Depth Bias

Depth errors at Base Tertiary (overburden reflector)

Depth error: 2.5% Prediction bias small (0.04%)

Depth errors for target & key overburden reflectors

expressed in standard deviation & mean

Depth Bias

18

Chasing highs: true or phantom?

Phantom highs on depth maps can be caused by imperfect TD-conversion (amongst others)

Selection Bias affecting volumes (1)

Assumptions

- Hypothetical prospect portfolio: 100 prospects all containing 1 bcm GIIP.
- Explorers evaluate imperfect data to asses prospect volumes and build portfolio.
- 3. Portfolio drilled in order of attractiveness (volume is key driver!)
- 4. Only *best part* of portfolio to be drilled.

Selection Bias affecting volumes (2)

Prospect portfolio (ranked on GIIP)

Post campaign conclusion: actuals do fall short of expectation!

conclusions

- Average depth error: 38 m (1std) i.e.1.2%
- Most depth errors due to TD conversion (rather than picking wrong loop)
- Bias might be explained by Selection Bias
- Bias (10m too *deep*) causes overestimate in volumes
- Proper depth conversion remains a challenge...

Observations from systematic depth conversion reviews: biased depth estimates and the impact on the drilling portfolio

Questions?

Acknowledgements: NAM, Wintershall, Engie, Total, ONE, Dana, Taqa, Petrogas, Vermilion, Tulip Oil, Hansa, Centrica, Sterling.

Guido Hoetz Chief Geoscientist EBN B.V. Utrecht, The Netherlands

ebn

23