

## Salt Induced Stress Anomalies affecting rock properties



Guido Hoetz Energie Beheer Nederland B.V. PGK lecture 18.1.2012 The Hague

## SISA acknowledgements

**Michiel Harings** 

Stefan Luthi Niek Bekkers Annemieke Vogelaar

Joris Steenbrink Juan Pi Alperin John Verbeek Alice Post TU Delft

"

"

"

"

"

**EBN** 

NAM

# **SISA** content

- Background
- •Triassic study
- •The common factor
- Stress Anomaly
- Implications
- Conclusions

## K7FB-102 depth error





- Rotliegend development target
- well cost: 12 mil €
- objective 103 m deep to prognosis
- gas column too small to complete
- GIIP reduced

## background



### K7FB102: deep to prognosis

## Seismic line: K7FB102



## background



Sonic log: ~10% velocity difference at ~1.5 km distance

## K7FB-102 Depth error Investigation

## Summary

Depth error (103m) mainly caused by failing to model an unusually strong lateral velocity gradient in the Triassic.

(Note: the velocity anomaly was not picked up by the seismic velocities)

## **Question:**

Could this have been predicted?

# **SISA** content

- Background
- •Triassic study
- •The common factor
- Stress Anomaly
- Implications
- Conclusions

## Geological study Triassic velocity workflow

- •Compile & QC all sonic data of Triassic in JDA area (~80 wells)
- •Validate intra-Triassic stratigraphy
- •Find practical Triassic sub-division (7 layers)
- •Find controlling factors for velocity variation:
  - 1) Stratigraphic composition
  - 2) Depth of burial (present day burial)
  - 3) Inversion (paleo-burial)
  - 4) Other?

# Study area: K/L blocks



Study area 1 Stud

Study area 2

## Triassic stratigraphy



## Velocity & burial compaction



Interval velocity vs midpoint depth plot (Lower Bunter)

# Velocity *vs.* present day depth:

deviations from normal compaction curve indicate <u>inversion</u>



Velocity *vs.* present day depth:

deviations from *normal compaction curve* indicate *inversion* 

K7-2 and K7B102 at opposite sides of normal compaction curve

Short distance: Inversion effect unlikely







## Geological study Triassic Velocity cross-plots

80 wells, 7 layers: - velocities of layers are correlated

- velocity anomalies are not layer but area specific!



# **SISA** content

- Background
- •Triassic study
- •The common factor
- Stress Anomaly
- Implications
- Conclusions



#### Triassic example #3







# **SISA** content

- Background
- •Triassic study
- •The common factor
- Stress Anomaly
- Implications
- Conclusions

## Salt Induced Stress Anomaly (1)

Initial condition





#### Salt Induced Stress Anomaly (2) adjusted condition



#### "brick in the bathtub" model

#### **GEOMECHANICAL FE modelling**

#### "brick in the bathtub" model



#### **Vertical Stresses**

from Finite Element Modelling

Largest magnitude = dark blue Smallest magnitude = red

## Example #5 (Drenthe)



## Example #6 & #7 (L4)



### Results study area 1&2 (2010)



## Implications

If salt welds cause increased stress ("point loading") in the Triassic above the weld, what about the rocks below the weld?

#### Assumption:

Rotliegend reservoir properties should be adversely affected by the "stress concentration" resulting from the salt weld.

#### **Rotliegend properties (1)**



**Reservoir below salt weld: lower porosity** 

#### **Rotliegend porosities (2)**



unit 1

0.04

0.02

0

ROCLT

ROSLU1

ROSLU2

ROSLU3

ROSLU4

ROSLU5

ROCLA

ROSLL1

ROSLL2

From 8 examples: 5 confirm model, 3 are non-conclusive

unit 2

unit 3

0.04

0.02

0

unit 5

unit 4

## 2009: SISA predicted and ....



Hoogezand-1 appraisal well

## 2009: SISA predicted and confirmed



Hoogezand-1 appraisal well

Triassic velocity: +18% Rotl. Porosity: -2.5% point

# More SISA?

Kazakhstan, Kashagan field



Salt welds



 Depth error caused by enigmatic velocity anomaly can be explained by geomechanical model

- Depth error caused by enigmatic velocity anomaly can be explained by geomechanical model
- 2) SISA is based on pointloading and impacts near saltweld area.

- Depth error caused by enigmatic velocity anomaly can be explained by geomechanical model
- 2) SISA is based on pointloading and impacts near saltweld area.
- 3) SISA affects velocity (up to 18%) and reservoir porosity (up to 3% *points*)

- Depth error caused by enigmatic velocity anomaly can be explained by geomechanical model
- 2) SISA is based on pointloading and impacts near saltweld area.
- 3) SISA affects velocity (up to 18%) and reservoir porosity (up to 3% *points*)
- 4) Never waste a good *trainwreck!*

## SISA

#### More reading

Petroleum Geoscience November 2011 Volume 17 Salt-Induced Stress Anomalies: an Explanation for Variations in Seismic Velocity and Reservoir Quality

Guido Hoetz<sup>1,2</sup>, Joris Steenbrink<sup>1</sup>, Niek Bekkers<sup>3, 4</sup>, Annemieke Vogelaar<sup>3,5</sup>, Stefan Luthi<sup>3</sup>

<sup>1</sup> Nederlandse Aardolie Maatschappij B.V. PO Box 28000, 9400 HH Assen, The Netherlands <sup>2</sup> Present address: Energie Beheer Nederland B.V. PO Box 19063, 3511EP Utrecht, The Netherlands

<sup>3</sup> Delft University of Technology, Department of Geotechnology, Stevinweg 1, 2628 CN Delft, The Netherlands

<sup>4</sup> Addax Petroleum Services Ltd, Avenue Eugène-Pittard 16, Genève, Switzerland

<sup>5</sup> N.V. Nuon Energy, PO Box 41920, 1009 DC Amsterdam, The Netherlands

The authors would like to thank NAM, Shell, ExxonMobil, EBN, Wintershall, Oranje-Nassau and NUON for their permission to publish this material.