

ATLAS TO EXPLORE HYDROCARBON OPPORTUNITIES IN THE DUTCH OFFSHORE

LOWER CRETACEOUS PLAY

Lower Cretaceous Play

Presented by:

Johan ten Veen

Team:

Maazen Saarig, Bas van der ES (EBN), Willeke Smit (EBN→ONE) Jurgen Foeken, Stefan Peeters, Johan ten Veen (TNO)

GIS support:

Merel Swart, Daan Petri (EBN)

Reviewers:

Arie Speksnijder (Hammersmark GeoServices B.V.) Harald de Haan (EBN)

Energising the transition

Lower Cretaceous play elements & risk mapping

ebn

Lower Cretaceous reservoirs

Modified after Van Adrichem Boogaert & Kouwe (1993-1997)

ebn

CRS maps reservoir presence

Vlieland sandstone members

	No KN		reservoir present > 5m		0-5m	KN, n	io reservoir
Ρ	OS: 0%		100%		70%	15%	

if only one reservoir > 5m \rightarrow reservoir is present

THO ebn

Play type	Seal Effectiveness				
	Composite seal thickness	POS (%)			
	Absent [0 m]	0			
olay	'Not Present' [0 – 20 m]	30			
Gas	Ambiguous [20 – 50 m]	80			
	Present [> 50 m]	100			

CRS Gas Charge (Vlieland & Holland)

CRS maps from GEODE source rock project Assumption: no gas charge from Posidonia

Middle Graben Coals

Input for migration

CRS gas charge & migration (Vlieland + Holland)

Based on presence of 1) sealing salt (ZE) and 2) marine clay seals (RN, AT, SG) encountered during upward migration from Carboniferous. Adjusted for fault density

CCRS Calculation

Play 3b Vlieland, gas

<u>3b Vlieland:</u>

Gas play: CRS reservoir presence (play risk) x CRS reservoir effectiveness gas (play risk) x CRS top seal gas (play risk) x CRS charge gas (play risk) x repeatability risk = **CCRS Vlieland Gas**

Sweetspots Gas ?

CCRS and Critical risk element

Outside grabens/inversion highs: Reservoir/Seal weakest element

CCRS Calculation

Play 3a Vlieland, oil

3b Vlieland:

Oil play: CRS reservoir presence (play risk) x CRS reservoir effectiveness oil (play risk) x CRS top seal oil (play risk) x CRS charge oil (play risk) x repeatability risk = CCRS Vlieland Oil

Sweetspots Oil ?

CCRS and Critical risk element

Conclusions Lower Cretaceous play

 \Box Weakest (critical) element maps \rightarrow key for further exploration

- □ Main chance for oil is in the grabens (charge↓)
- □ Chance for gas more widespread (charge↓)
- Northern DCG is underexplored. Friesland Mb is patchy, but may provide sweet spots (if charged)
- More consistency of well stratigraphy required
- Some producing fields have thin Vlieland + Holland seal additional Cenozoic seals ?
- PDWA shows tight oil play occurs at inversion axis (burial anomaly)
- □ Outlook → outside "certain" domains, reservoirs can be considered for other applications (CCS, geothermal, hydrogen,)

Thank you for your attention

