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Abstract

Liquid loading of a gas well is the inability of the produced gas to remove the produced liquids from the
wellbore. It is one of the major issues that decreases flow production substantially or even stops flow
completely for wells that are in the mature or tail-end production phase. To sustain gas production,
the problem can be overcome with End of Field Life (EoFL) techniques. Of these techniques, velocity
strings and foam injection are the two most popular ones in the Netherlands. To date, the availability of
data on the potential of EoFL techniques is limited and this study aims to quantify the potential volume
gain from these two EoFL techniques.

Moreover, it is difficult to determine when to install these techniques due to the prediction uncer-
tainty of the liquid loading moment. A solution can be found in artificial intelligence. Using big data
may predict future instability of production rates and may therefore be very useful in predicting the
liquid loading moment in advance. In this thesis a first step is undertaken to use artificial intelligence,
in particular artificial neural networks (ANN), to predict the onset of liquid loading applying actual field
data.

In total, sixty-four liquid loading wells were examined in terms of production quantity. It can be
concluded that the volume gain using a velocity string or foam injection has a very wide spectrum.
About half of the wells produced 10 to 15 million Nmኽ more due to one of these techniques, while
other wells even produced 100 million Nmኽ or more. The wide range is due to the dependency on
well and environmental conditions. Next to this it may be noted that operators had expected a larger
volume gain from these EoFL techniques.

Of the sixty-four wells, fifteen wells were examined in more detail, particularly in terms of economic
gain. The techniques show a high success rate for over 70% of the wells with a NPV of some 20 million
euros per well. The remaining wells showed a negative NPV, but only due to external factors, for
example a leaking tubing. Therefore, EoFL techniques have shown to be valuable but more research
should be undertaken to enhance knowledge on improving volume gains for wells in the mature or
tail-end production phase in the Netherlands.

When predicting the onset of liquid loading, ANN forecasted future gas rates from historical monthly
production data using the tubing size as a variable input parameter. The Nonlinear Autoregressive with
External Input (NARX) is trained using the Levenberg-Marquardt algorithm. In order to improve train-
ing performance pre-processing was undertaken, the Lowess filter was applied and normalization was
conducted.

The network showed a satisfactory prediction of the gas flow rate. Having the lowest mean squared
error, the network was constructed with two layers, each containing 75 neurons. Coleman criterion
was introduced to indicate the onset of liquid loading. When the predicted flow rate falls below the
Coleman rate, the liquid loading alerter is triggered. The alerter forecasts the month in which liquid
loading may occur up to a maximum period of twelve months. The prediction becomes more precise
as the alerter approaches the the liquid loading moment and it may be concluded that the alerter is
accurate up to two months in advance. Moreover, the alerter is able to predict nine months prior to
liquid loading with a deviation of up to two months either side. Nevertheless the Coleman Criterion
has the tendency to calculate lower critical rates than other methods. Therefore it may predict liquid
loading to occur at a future month than the exact month of liquid loading.
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1
Introduction

Many gas fields in the Netherlands are in the mature or tail-end production phase, presenting oper-
ational and financial challenges when producing these assets [Yavuz and Jansen, 2013]. There are
approximately 260 active fields in EBN’s portfolio, of which the remaining recoverable gas volumes are
categorized in four different segments; build up, plateau, mature and tail end. The majority (85%) of
the remaining fields are considered to be mature or in the tail-end production (Figure 1.1).

Figure 1.1: Category of active fields in the Netherlands [Yavuz and Jansen, 2013].

To be able to produce from these mature or tail-end production wells the concept of liquid load-
ing needs to be introduced. Liquid loading is one of the major issues that decrease flow production
substantially or even stops flow completely. To overcome this problem several End of Field Life (EoFL)
techniques have been introduced by operators in the Netherlands in the last ten years. Most commonly
applied technology in the Netherlands are velocity strings and foam injection; both batch and contin-
uous, (Figure 1.2). The analysis on the historical production performance of the Dutch gas fields has
shown that the techniques are effective, not only on the recoverable reserves, but they also have a
positive effect on platform life extension [Yavuz et al., 2013].

A solution for liquid loading can thus be provided by EoFL techniques. However until today it is
difficult to know when to install these techniques due to the prediction uncertainty of the liquid loading
moment. This means that the well might already be liquid loading or even stopped producing completely
when only then the operator decides to implement an EoFL technique. An inefficient approach, leading
to financial losses. A solution can be found in artificial intelligence. Learning from historical data with
the use of artificial intelligence is going to have a major effect on the efficiency of operations in the
near future in all fields. Considering the subject of liquid loading, big data may predict future instability
of production rates and is therefore very useful in predicting liquid loading in advance. A first attempt
using artificial intelligence, in particular artificial neural networks (ANN), to predict the liquid loading
moment is performed in this thesis.
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2 1. Introduction

Figure 1.2: Distribution of deliquification technologies of gas wells in the Netherlands [Yavuz and Jansen, 2013].

1.1. Research Objectives
This report focuses on two topics considering EoFL wells. As it is important for an operator to know
when liquid loading will occur and how to remove a liquid column, this thesis looks at predicting the
onset of liquid loading and at deliquifying gas wells considering multiple EoFL techniques to sustain
gas production of gas fields in the Netherlands.

At first, the analysis is performed to understand the problem of liquid loading and its solutions. At
the start, the production data of a small number of wells will be gathered in order to perform a quick
analysis study to determine the potential of EoFL techniques. When this proved to be successful a larger
amount of wells, different techniques and various operators, will be considered and an analysis of the
added value of the deliquified wells will be made. To predict the volume gain by EoFL techniques the
TNO deliquification tool* is used. The tool simulates the effects of EoFL techniques and a comparison
can be made to the production performance without a mitigation technique [Schiferli et al., 2013]. At
the end the economic gain will be calculated for a well using an EoFL technique.

Conducting this study provides operators with lessons for the future and to quantify the potential
of different EoFL techniques in terms of both added recoverable resources and economic value added.

Secondly an ANN is built to predict the onset of liquid loading. To date, it is very difficult to predict
the moment when gas flow is unable to lift liquid to surface. Therefore a forecast is made of the
historical monthly production rate and from this a prediction will be made of the month in which liquid
loading occurs. The neural network (NN) will be built using the MATLAB® toolbox [MATLAB®, 2016f].

1.2. Research Outline
The next two chapters will explain the fundamentals of the two research topics. Fundamentals of Gas
Well Deliquification describes a production profile, the concept of liquid loading and the two techniques
studied to remove water from the well. Fundamentals of Artificial Neural Network shows how the net-
work is built and trained. The next chapter, Methodology, will describe the step by step procedure
taken during this research. The approach has changed several times during the development of the
neural network to obtain the optimum network in predicting the liquid loading moment. Then the
results are shown and discussed extensively in its succeeding chapter. Conclusions and recommenda-
tions are presented in the final chapters.

* The TNO deliquification tool is build by TNO in cooperation with EBN and several operators.
Contact for further requirements.



2
Fundamentals of Gas Well

Deliquification

The share of gas is increasing in the world’s energy supply. Special attention needs to be given to those
wells that experienced declining gas production or even stopped production completely [Lea et al.,
2008]. The reduction of gas production is due to declining reservoir pressure and gas velocities, next
to increased water production. Increased water production can cause a column of water to accumulate
at the bottom of the well, preventing reservoir fluids from entering the wellbore. This phenomena is
called liquid loading of the well [Rao, 1999]. In this chapter the principle behind the reasons for liquid
loading, together with techniques to stimulate the well, are explained.

2.1. Production Profile
The production of an oil or gas field tends to pass through a number of stages. This can be described
by the production curve shown for oil in Figure 2.1. After an oil field is discovered, the new field is
appraised to determine the development potential of the reservoir. If it meets volume and production
rates required for commercial viability, further development follows and the first oil production marks
the beginning of the build-up phase. The production gradually builds up to the plateau phase, where
the fully installed extraction capacity is used, before finally arriving at the onset of decline as subsurface
conditions will no longer be able to support this rate of extraction. The decline phase ends in aban-
donment once the economic limit is reached [Höök, 2009]. The moment of abandonment is preferably
extended up to the last drop of oil. The gas profile looks similar, but often shows a shorter plateau
phase. In order to extend abandonment, end of field life techniques are implemented. The aim of this
study is predict the liquid loading moment in order to avoid abandonment in an early stage.

Figure 2.1: A theoretical production curve, describing the various stages of maturity [Höök, 2009].

3



4 2. Fundamentals of Gas Well Deliquification

2.2. Liquid Loading
Liquid loading of a gas well is the inability of the produced gas to remove the produced liquids from the
wellbore. When a gas well is producing, the pressure in the gas reservoir is high and the gas velocity in
the tubing is sufficient to drag the liquid upwards to the surface. However after several years, towards
the end of field life, the pressure in the reservoir has become so low that the gas does not meet critical
velocity and an accumulation of liquid down-hole occurs. The accumulation of liquid will impose an
additional back pressure on the formation that can significantly affect the production capacity of the
well [Turner et al., 1969]. The liquid can come from interstitial water in the reservoir matrix or it can
be formed due to condensation of water vapor and hydrocarbon gas as the pressure and temperature
decrease along the trajectory of the well tubing [van Nimwegen, 2015]. The production will cease
entirely to the extent that the well has to be shut in, even though there is still natural gas remaining
in the reservoir.

2.2.1. Multiphase Flow
To understand the effects of liquids in a gas well, it is important to understand the liquid and gas phases
interaction under flowing conditions. Four flow regimes are presented for vertical multiphase flow [Lea
et al., 2008]. These four patterns are determined by the velocity and the relative amount of the gas
and liquid phase (Figure 2.2). A gas well may go through any or all of these flow regimes during its
producing life.

Figure 2.2: The four flow regimes for vertical multiphase flow [Lea et al., 2008].

• Annular Flow. Annular flow occurs at high gas velocities, in which gas is the continuous phase
and the liquid is present in dispersed droplets in the gas and in a thin film at the wall of the pipe.

• Churn Flow. When gas velocity is decreased, the flow changes from a continuous gas phase to
a continuous liquid. This marks the transition to churn flow. So instead of moving upwards the
liquid film reaches a certain point where it starts to move downwards, liquid loading is related to
this transition.

• Slug Flow. As the gas rate decreases even further, gas bubbles alternate with liquid slugs.

• Bubbly Flow. At last at even lower gas flow rates, bubbly flow occurs, where gas is present as
small bubbles, rising in the liquid.

2.2.2. Indicators of Liquid Loading
As the flow rate declines or the well stops production completely due to liquid loading, it is important
that the effects are detected at an early stage to prevent costly losses in gas production and reservoir
damage. There are several symptoms that indicate when a gas well is having problems with liquid
loading and are presented shortly below.

• Presence of orifice pressure spikes. It is possible to recognize the start of liquid loading
by looking at the slugs of liquid produced at the well head. This slug flow is illustrated by two-
pen recorder charts as pressure spikes. Accompanied by a rapid drop in production and a drop in



2.2. Liquid Loading 5

surface tubing pressure the two-pen chart is a sure indication of liquid loading problems. However
it is not the most efficient technique as many wells have a liquid knock-out before these orifice
measurements [Lea et al., 2008].

• Shooting fluid levels on flowing gas wells. Analysis of the acoustic fluid levels acquired
on gas wells can be used to determine the amount of liquid loading into the formation, the
approximate gas rate into tubing, the equivalent gradient of the gaseous liquid column in the
tubing at the flowing bottom hole pressure [Rowlan et al., 2006].

• Increasing difference between the tubing and casing pressure. When liquids accumulate
in the bottom of the wellbore, the added pressure head on the formation lowers the tubing
pressure. Moreover when gas is produced from the reservoir gas percolates into the tubing
casing annulus, causing an increase in the surface casing pressure. Therefore in a flowing well,
a decrease in tubing pressure and a corresponding increase in casing pressure are indicators of
liquid loading [Lea et al., 2008].

• Pressure survey shows a sharp change in pressure gradient. Pressure surveys measure
the pressure with depth of the well either while shut in or while flowing. The measured pressure
gradient is a direct function of the density of the medium and the depth, and for a single static
fluid, the pressure with depth should be nearly linear. Since the density of the gas is significantly
lower than that of water or condensate, the measured gradient curve will exhibit a sharp change
of slope when the standing liquid in the tubing is encountered. The difficulty lies however in the
presence of a two-phase flow regime as this changes the slope measured by the survey and wells
having a tapered tubing string as the change in cross-sectional flow area will cause a change in
the flow regime [Lea et al., 2008].

• Erratic production and increase in decline rate. An important indication of downhole liquid
loading problems is the shape of a decline curve [Park, 2008]. The decline curve should be ana-
lyzed for long periods and changes in the general trend need to be diagnosed. This is explained
by Figure 2.3. The smooth exponential type decline curve represents a single gas production,
while the sharply fluctuating curve is a an indicative of liquid loading as it shows a sudden de-
parture from the existing curve to a new steeper slope. Well abandonment will occur far earlier
than with the original curve [Lea et al., 2008].

Figure 2.3: Decline rate showing the onset of liquid loading [Lea et al., 2008].

• Calculating minimum critical Velocity. High rate wells produce liquid together with gas
production. After some time the rate drops as reservoir pressure decreases. The well will produce
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below a critical rate that can transport liquid to the surface. This results in an accumulation of
liquids in the wellbore and the question arises until when the gas can still bubble through the
accumulated liquids. The minimum gas velocity required to carry liquids to the surface can be
calculated by Turner rate [Turner et al., 1969] and Coleman Criterion [Coleman et al., 1991] and
by doing so provides an indication of the onset of liquid loading [Lea et al., 2008]. The method
is explained in the succeeding section.

All these methods are indicators of liquid loading. However, they do not predict the liquid loading
moment but only record the moment it happens. Therefore, in this research, the onset of liquid loading
is predicted by forecasting the flow rate. When the rate is declining, as was seen in Figure 2.3, and
the flow rate falls below the minimum critical velocity a prediction of the onset of liquid loading can be
made.

2.2.3. Critical Velocity
In this section the method to predict the onset of liquid loading is presented. The Turner criterion
[Turner et al., 1969] is most commonly used to predict liquid loading. This technique was developed
for a substantial accumulation of well data and has been shown to be reasonably accurate for vertical
wells. The method is applicable at any point in the well and should be used in conjunction with methods
of Nodal Analysis if possible [Lea et al., 2008]. There are two possibilities when gas is flowing upwards
through the tubing. Either gas velocity is sufficient to drag liquid upwards, such that the average
velocity is upwards, or the gas velocity is insufficient and liquid moves downwards on average, causing
liquid to accumulate at the bottom of the well. The velocity a liquid droplet can attain against gravity,
thus the minimum velocity the gas flow needs in order to produce liquids along with it, is called the
critical gas velocity [Binli, 2009]. As the Turner relation was developed from data from surface tubing
pressures mostly greater than 1000 psi, Turner’s critical rate can be used for high pressures but it is not
as accurate for a low tubing head pressures. Therefore the Coleman criterion [Coleman et al., 1991]
is introduced. Similar relationships describe the minimum critical flow rate for lower surface tubing
pressures, only without the Turner 1.2 adjustment that Turner used to fit his data. In this thesis wells
at the end of their producing lives are examined, therefore Coleman is considered most suitable. The
Turner velocity is shown in Equation 2.1 and the Coleman criterion in Equation 2.2.

𝑈 = 1.92
𝜎ኻ/ኾ(𝜌ፋ − 𝜌፠)ኻ/ኾ

𝜌ኻ/ኾ፠
(2.1) 𝑈 = 1.59

𝜎ኻ/ኾ(𝜌ፋ − 𝜌፠)ኻ/ኾ

𝜌ኻ/ኾ፠
(2.2)

where 𝑈 is the critical velocity, 𝜎 is the surface tension, and 𝜌ፋ and 𝜌፠ the density of liquid and
gas respectively. For water the surface tension is 60 dyne/cm and the density is 67 lbm/ftኼ. The gas
density in lbm/ftኽ is given by Equation 2.3.

𝜌፠ =
𝑀ፚ።፫𝛾፠𝑃

𝑅(𝑇 + 460)𝑍 = 2.715𝛾፠
𝑃

(460 + 𝑇)𝑍 (2.3)

where 𝑀ፚ።፫ is the molar mass of gas, 𝑃 is wellhead pressure in bar, 𝛾፠ is the gas gravity, 𝑅 is the
gas constant, 𝑇 is the wellhead temperature and 𝑍 is the gas compressibility. Although critical velocity
is the controlling factor, one usually thinks of gas wells in terms of production rate rather than velocity
in the wellbore. From the ideal gas law the rate can be calculated and is shown in Equation 2.4.

𝑄 = 𝑃𝑇፬𝐴𝑈
𝑃፬𝑍𝑇

= 3.067𝑃𝑈𝐴
(𝑇 + 460)𝑍 (2.4)

where 𝐴 is the tubing cross-sectional area. The second formula gives the critical gas flow rate in
field units, namely MMscf/d.

2.2.4. Systems Nodal Analysis
A useful tool for the analysis of well performance is system Nodal Analysis. It divides the total well
system into subsystems at a specific location called the nodal point. One subsystem considers the
inflow from the reservoir into the well and the other one considers the outflow system from the bottom
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of the well to surface. For each of these two subsystems the pressure at the nodal point is calculated
and plotted as two separate, independent pressure-rate curves.

The reservoir production performance is shown in the inflow performance relation (IPR). The IPR
curve plots the flow rate against the bottomhole pressure. When the bottomhole pressure is equal to
the reservoir pressure the flow rate is zero and the maximum flow rate is given where the bottom hole
pressure is zero [Gromotka, 2015]. The reservoir pressure slowly decreases over the years and the
reservoir curve moves towards lower gas flow rates and lower bottomhole pressures.

The tubing performance curve (TPC) depicts the relation between the pressure drop of the well and
the flow rate at the well head. The tubing pressure drop is essentially the sum of the surface pressure,
the hydrostatic pressure of the fluid column, and the frictional pressure loss resulting from the flow
of the fluid out of the well. Thus it describes the performance of a specific tubing size, depth and
wellhead conditions. The gas in a well often contains liquid, i.e. there is two-phase flow. This results
in a specific shape for the TPC curve. The pressure drop over the well needs to be large enough to
compensate the forces working on the fluid. At low flow rates the gravitational force is large due to
the large ratio of liquid [Gromotka, 2015]. The flow is typically bubbly flow, a flow regime that allows
liquids to accumulate in the wellbore. Slightly to the left of the minimum in the TPC, the flow is often
in the slug flow regime, also inefficient as the liquids are only transported to surface periodically in the
form of large slugs. At high flow rates the frictional force between the fluid and the well is large. This
happens at the right side of the minimum and flow is usually in the mist flow regime that effectively
transports small droplets of liquids to surface. This results in a so called J-curve, shown in Figure 2.4
[Lea et al., 2008]. The TPC curve is a combination of all possible steady state production conditions
for the well, given certain conditions.

Figure 2.4: Standard shape of the TPC curve [Lea et al., 2008].

The intersection of the inflow and outflow curves is the predicted operating point where the flow
rate and pressure from the two independent curves are equal. The flow rate is called the natural
production rate. The amount of operating points can be zero, one and even two. If there are two
operating points, however, one is often unstable. An operating point is stable when the flow adjusts
back to the operation point after slight perturbation from natural production conditions. Otherwise it
is considered unstable. The principle is shown in Figure 2.5 and Figure 2.6 [Lea et al., 2008]. The rule
of thumb is that the flow rate to the left of the minimum of the TPR curve is unstable.

At low reservoir pressures there is no stable operation point (the two curves do not intersect) and
production of gas is no longer possible. The goal of deliquifying gas wells is to change the TPC in such
extent that at lower reservoir pressure a stable operation point can still be found. This can be read in
the next section.

2.3. Gas Well Deliquification Methods
Several methods have been developed to postpone the onset of liquid loading. These deliquification
techniques can be subdivided into two categories, namely the methods that use the energy of the well
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Figure 2.5: The stable operation of the TPC and IPR
curve.

Figure 2.6: The unstable operation of the TPC and IPR
curve.

fluids to lift liquid to surface and methods that use an external energy source to lift liquids. The latter
includes downhole pumps or the injection of compressed lift gas. In this research focus lies on the first
category including two techniques; velocity strings and the injection of surfactants.

2.3.1. Tubing Size
The reason to run a smaller tubing instead of the production string is to increase the velocity for a given
rate and sweep the liquid out of the well and the tubing. The concept of a smaller diameter is too
reduce the cross-sectional flow area. The smaller cross-sectional flow area increases the gas velocity
in the tubing. The higher gas velocity at the bottom of the tubing provides more transport energy to
lift liquid up out of the well [Lea et al., 2008].

The basic concept of tubing design is to have a large enough tubing diameter such that frictional
pressure losses in the tubing are minimal, and a small enough tubing such that the well is restored
back to flowing production [Rao, 1999]. In general, faster velocity reduces the liquid holdup, the
percentage of liquid by volume in the tubing and lowers the flowing bottomhole pressure attributed to
gravity effects of the fluids in the tubing. However, a tubing size too small for the production rate can
cause excess friction and requires a larger flowing bottomhole pressure. When using a velocity string
for liquid loading care needs to be taken to the fact that in a small tubing a volume of fluid that may
have been negligible in larger tubing can be significant in small tubing.

When resizing tubing, the reservoir inflow is needed from a reservoir model or an IPR curve obtained
from well test data. From the nodal concepts, seen in the previous section, a tubing curve for various
sizes can be generated. The shift of the TPC for smaller diameters can be seen in Figure 2.7. The
curve is shifted upwards to the left from the original TPC and thus the critical velocity is lower than in
the larger tubing.

Figure 2.7: The TPC of the original tubing and the shifted TPC when installing a velocity string [van Nimwegen, 2015].



2.3. Gas Well Deliquification Methods 9

2.3.2. Foam Assisted Lift
The principal benefit of using foam as a gas well dewatering method is that liquid is held in the bubble
film and exposed to more surface area resulting in less gas slippage and a low density mixture. The
foam is effective in transporting the liquid to the surface in wells with very low gas rates when liquid
holdup would otherwise result in sizable liquid accumulation and high multiphase flow pressure losses
[Lea et al., 2008].

To explain in more detail, the gas bubbles are separated from each other in foam by a liquid
film. Surfactants are employed to reduce the surface tension of the liquid to enable more gas-liquid
dispersion. The liquid film between bubbles has two surfactant layers back to back with liquid contained
between them. This method of tying the liquid and gas together can be effective in removing liquid
from low volume gas wells.

The principle can also be explained by looking at Equation 2.2. When foam reduces the surface
tension, it reduces the required critical velocity. Foam also reduces the density of the liquid droplets
to a complex structure containing water and/or condensate and gas. A rule of thumb presented by
Weatherford is that foaming water will reduce critical velocity by about two-thirds in a gas well by
reducing the surface tension and the liquid density simultaneously [Lea et al., 2008]. Next to this
the TPC curve is also an indicator that production is possible again due to surfactants, as surfactants
change the fluid properties as said before, the TPC changes. The TPC will shift to the left and when it
crosses the IPR curve, the well is back into production. This can be seen in Figure 2.8 [van Nimwegen,
2015].

Figure 2.8: The TPC curve considering only water in the tubing and the shifted TPC after foam injection [van Nimwegen, 2015].

Foam is a simple and inexpensive EoFL method for low rate wells. The foaming tendency for
various systems depends on the amount and type of well fluids and on surfactant effectiveness. Wells
producing substantial condensate (greater than 50%) may not foam. The method is mainly applicable
to wells with low gas rates. In gas well liquid removal applications, the liquid gas surfactant mixing
must be accomplished downhole and often in the presence of both water and liquid hydrocarbons.
There are several ways to inject surface active agents (surfactants), namely dropping soap sticks down
the tubing, batch treating down the annulus (with no packer present) or lubricating a capillary string
down the tubing for injection of surfactants.





3
Fundamentals of Artificial Neural

Networks

3.1. Introduction
Artificial neural networks can realize complex learning and adaptation tasks by imitating the function
of biological neural systems. In contrast to knowledge-based techniques, no explicit knowledge is
needed for the application of neural nets. Their main strength is the ability to learn complex functional
relations by generalizing from a limited amount of training data. Neural networks can thus be used as
a black-box model for nonlinear systems and can be trained by using input and output data observed
in the system.

In Figure 3.1 a model of ANN is considered. The mathematical model mimics the functionality of
biological neurons (called artificial neurons) in various levels of detail. It basically is a static function
with several inputs (representing dendrites) and one output (the axon). Each input is associated with
a weight factor (synaptic strength)[Babuska, 2010]. The weighted inputs are added up and passed
through a nonlinear function, which is called the activation function. The value of this function is the
output of the neuron.

Figure 3.1: Artificial Neuron [Babuska, 2010].

To put this scheme into a mathematical formula, Equation 3.1 is presented below.

𝑧 =
፩

∑
።ኻ
𝑤።𝑥። = 𝑤ፓ𝑥 (3.1)

Sometimes, a bias is added when computing the neuron’s activation. The bias can be regarded as
an extra weight from a constant input as is shown in Equation 3.2.

𝑧 =
፩

∑
።ኻ
𝑤።𝑥። + 𝑏 = [𝑤ፓ𝑏] [

𝑥
1] (3.2)

The activation function maps the neuron’s activation z into a certain interval. Often used activation
functions are a threshold, sigmoidal and tangent hyperbolic functions.
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3.2. Architecture
The most common net is the artificial feedforward neural network, shown in Figure 3.2. The network
with several layers are called multi-layer neural networks, as opposed to single-layer networks that
only have one layer. They consist of one input layer, one output layer and a number of hidden layers in
between them. The layers consist of simple nonlinear processing elements, the neurons. The neurons
are interconnected through adjustable weights. The information relevant to the input and output
mapping of the net is stored in these weights. In the feedforward neural network the information
flows only in one direction, from the input layer to the output layer. The sum of the products of the
weights and the inputs is calculated in each node, and if the value is above some threshold (typically
0) the neuron fires and takes the activated value (typically 1); otherwise it takes the deactivated value
(typically −1) [Babuska, 2010].

Figure 3.2: A multi-layer feedforward neural network (www.omniresources.com).

3.3. Training
The question for training a neural network is how to determine the appropriate structure (number of
hidden layers, number of neurons) and parameters of the network. The training itself is the adaptation
of weights in a multi-layer network such that the error between the desired output and the network is
minimized.

3.3.1. Feedforward Computation
From the network inputs 𝑥።, 𝑖 = 1, ..., 𝑁, the outputs of the first hidden layer are first computed. Then
using these values as inputs to the second hidden layer, the outputs of this layer are computed, and
so on. Finally, the output of the network is obtained [Babuska, 2010].

The computation proceeds in three steps:

1. Compute the activations 𝑧፣ of the hidden layer neurons:

𝑧፣ =
፩

∑
።ኻ
𝑤፡።፣𝑥። + 𝑏፡፣ , 𝑗 = 1, 2, ..., ℎ (3.3)

where 𝑤፡።፣ and 𝑏፡፣ are the weight and the bias of the hidden layers, respectively.
2. Compute the outputs 𝑣፣ of the hidden layer.

𝑣፣ = 𝜎(𝑧፣), 𝑗 = 1, 2, ..., ℎ (3.4)

3. Compute the outputs 𝑦፥ of output layer neurons.

𝑦፥ =
፡

∑
፣ኻ
𝑤፨፣፥𝑣፣ + 𝑏፨፥ , 𝑙 = 1, 2, ..., 𝑛 (3.5)
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where 𝑤፨፣፥ and 𝑏፨፥ are the weight and the bias of the output layers, respectively.

3.3.2. Weight Adaptation
When the output of the network is computed, it is compared to the desired output. The difference
between the output of the network and the predicted output is called the error. By backward compu-
tation the weights are adjusted layer by layer, starting with the output layer, in order to decrease this
error. The error is used to adjust the weights in the net via the minimization of a certain cost function,
in this research this will be the mean squared error.

3.4. Performance
To evaluate the performance of the neural network the mean square error (MSE) is used in this study,
shown in Equation 3.6.

𝑅𝑀𝑆𝐸 = 1
𝑛

፧

∑
።ዅኻ

= (𝑦ፚ፭። − 𝑦፩፫፞፝። )ኼ (3.6)

where 𝑦ፚ፭ is the true output and the 𝑦፩፫፞፝ is the predicted data, and n is the number of data
points [Chakra et al., 2013].

Regression analysis is carried out for demonstrating the model performance during validation phase.
The model performance assessed by regression analysis is illustrated using regression plots. With these
plots one can assess how consistent the forecasted data is with the actual data. It is considered that if
the regression of a model follows the output = target line more closely the model can perform better
prediction, since the output = target lines represent the best fit [Kooijman, 2011].





4
Methodology

4.1. Production Analysis
To understand the liquid loading phenomena and the influence of a velocity string or foam injection 64
wells are considered in this thesis from the 260 wells that are in EBN’s portfolio (Figure 4.1). A data
base is built with these wells including the reservoir parameters, total produced volume, producing
years, volume gain, economical costs of mitigation technique etc. A short study is conducted on
the history of these wells and the important parameters; reservoir pressure, well head pressure, gas
density, reservoir temperature, liquid gas ratio and the non-Darcy coefficient (A) and the friction factor
(F). These parameters are introduced in the TNO deliquification tool. The tool predicts the ultimate
recovery, abandonment pressure, cumulative production and the producing years for several techniques
and compares this to the case without mitigation. In the Appendix the interface of the tool is shown.
A short description of the parameters is given below.

Figure 4.1: A map of the Netherlands showing the location of the wells, both onshore and offshore, that are used in this research.
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• Wellbore Properties These include the wellhead pressure and the wellhead temperature at the
time of installing a velocity string or injecting foam.

• Reservoir Properties These include the reservoir pressure, the initial reservoir temperature
and the dynamic gas initially in place (GIIP). The reservoir pressure of fluids within the pores
of a reservoir, usually comprise the hydrostatic pressure or the pressure exerted by a column of
water from the formation’s depth to sea level. Both the initial pressure, measured in a discovery
well, and the reservoir pressure before installing an EoFL technique are taken into account in
calculating the volume gain.

• Gas Density The gas density can be calculated by the sum of the density of air and the specific
gas gravity, meaning the density of the gas relative to air [Jansen, 2015]. At standard conditions
(15 °C and 1 atm) the gas density is 1.2260 kg/mኽ. The gas gravity at standard pressure and
temperature is searched for every well specifically, usually around 0.65.

• Gas Liquid Ratio The ratio of produced gas volume to total produced liquid (oil and water)
volume at surface [Jansen, 2015].

• Darcy and non-Darcy Coefficient A is the Darcy coefficient, also known as the laminar flow
coefficient. When flow is laminar the Darcy equation is valid and the flow describes a linear
relationship between volumetric flow rate and pressure gradient, but for non-Darcy flow a second
term is introduced by Forcheimer, represented by the B factor. The B factor is the non-Darcy
coefficient, also called the frictional flow (F) in the deliquification tool and it incorporates the
pressure losses related to turbulence in the fluid [Veeken et al., 2010]. The quadratic equation
for saturated oil and gas wells is seen in Equation 4.1 [Schiferli et al., 2013]. From this equation
the A & F factors are determined. The pressure and flow rate are taken from the well test done in
a newly drilled well. Note that these values change slightly during production and as this research
looks at wells at the end of their lives the A & F factors may not be exact. Though it is the best
representation available here.

𝑃ኼ፫፞፬ − 𝑃ኼ፰፟ = 𝐴𝑞 + 𝐵𝑞ኼ (4.1)

To understand the influence of these parameters on the gas production several wells are tested
with the deliquification tool. These wells were chosen due to the data available from operators. The
parameters described above are needed when using the tool, next to the well completion. The quan-
tification of the analysis focuses on velocity strings and foam. For a velocity string the tubing size is
needed to calculate the operational window and flow rates. For application of foam, a reduction of
50% of critical velocity is assumed.

Figure 4.2 shows the production profile of well 1. From the production history it strikes the eye that
the velocity string is implemented only in December 2010, although the well has not been producing
since may 2002 because of back-out production from other wells in the field. The well is closed in,
pressure builds up and the well produces from 2008 to the beginning of 2010 with an insignificant
amount. With a 3ኻኼ inch velocity string another 122 million Nmኽ is produced in about 2

ኻ
ኼ year, which is

a good 6.9% of the total production of the well.
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Figure 4.2: Production profile of well ኻ including historic events.

4.1.1. Coleman Rate
In figure 4.3 the Coleman rate, calculated from Equation 2.2, is plotted versus the flowing tubing
head pressure (FTHP). The critical rate is calculated by equation 2.4. From the following parameters,
wellhead temperature of 50 °C and a specific gas gravity of 0.6, a gas compressibility factor is calculated
by Beggs and Brill [Guo and Ghalambor, 2005]. The higher the pressure the higher critical rate is needed
to keep production going. Note that the rate is given in Nmኽ/month and the FTHP in bar. This is more
practical in this research as the flow rates from the data base are given in cubic meters per month as
well. The critical rate is calculated for each well to determine the liquid loading moment. The table
showing the critical rate per well is shown in the Appendix.
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Figure 4.3: The Coleman critical rate versus the flowing tubing head pressure for a tubing size of 3.5, 4.5, 5 and 7 inch.
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4.1.2. Analysis Performed
After investigating the production profiles of the wells and completing the data base, the following
analyzes were carried out for all gas wells including the influence of EOFL techniques:

• A comparison of the volume gain and the additional producing years by a velocity string between
the prediction from the deliquification tool, the operators expectation before implementation of
a velocity string and the actual volume gain of the EoFL technique

• A sensitivity study on the parameters needed to run the deliquification tool

• Difference of actual gained volume and the expected volume gain by the operator for velocity
strings, continuous foam and batch foam

• Influence of field size to production gain and the month in which a EoFL technique is installed,
assuming this is the time a well can produce before liquid loading

• Difference of volume gain between velocity string and batch & continuous foam

• Economic analysis
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4.2. Forecasting using Artificial Neural Networks
Literature has shown that ANN can be used to forecast gas production. In this research NN is trained
to forecast the production rate per month with which the onset of liquid loading can be predicted.
When the predicted flow rate falls below the Coleman rate, the liquid loading alerter is triggered. The
aim is to have the system supply a time-based prediction, thus presenting the month in which liquid
loading happens. In this chapter pre-processing, designing the neural net and the training procedure
are described.

4.2.1. Input & Target Variables
The input variables need to be chosen carefully as it will influence the target values directly. The aim is
to generate a production forecast per month. The production forecast will be called the target. A time
series of historical production rates per month is therefore needed as one of the inputs. The production
rate is influenced by several indicators, but in order to keep the training scheme simple the wells are
subdivided according to the tubing size. Production will be higher in a larger tubing diameter and vice
versa. The operator’s choice of tubing size will depend on the flowing tubing head pressure, the size
of the reservoir, etc. Thus the production curve will vary between these differently sized wells. By
implementing them into the ANN, the network learns a specific pattern for each tubing size as input
value. The diameters considered are 7, 5, 4.5 and 3.5 inch.

The MATLAB® neural network toolbox [MATLAB®, 2016f] has several wizards to solve different kind
of problems. Prediction is a kind of dynamic filtering, in which past values of one or more time series are
used to predict future values. Dynamic neural networks are used for nonlinear filtering and prediction.
Therefore the Dynamic Time series is used, and in particular the Nonlinear Autoregressive with External
(Exogenous) Input (NARX). This network predicts series y(t) given d past values of y(t) and another
series x(t). Thus y(t) represents the production data and x(t) corresponds to the tubing diameter, in
this case a constant. The network is shown in Figure 4.4.

Figure 4.4: Dynamic Time series network [MATLAB®, 2016f].

Since only monthly data is available at EBN for this research, a compensation was needed for their
inherent inaccuracy. The monthly data is an average of all producing days, thus the data is less precise
than daily data. The days that a well has not produced are not included in this average, let alone the
hours. The data acquisition in this thesis has revealed the many imperfections in producing numbers
and the time a well can produce. It seems that producing only several days of a full month was the
rule rather than the exception. By taking into account the up-time, meaning the days that a well was
producing, a new monthly data set is obtained. This was simply done by dividing the producing days
by the days in the specific month and then dividing the production rate per month by this ratio. The
data now gives the total production of a particular month if it would have produced all 30 or 31 days.
The large fluctuations are hereby smoothed.

4.2.2. Data Pre-processing
In the development of an ANN system the input data needs to be pre-processed before performing a
prediction. In this research the two procedures in order to do so are noise reduction and normalization.
The raw field data, and in particular the monthly data, include noise. Thus the production profile does
not look as ideal as in Figure 2.1. Noise includes well problems that hinder production or even moments
that the well is closed-in, often several times during a wells producing life. This could be due to several
reasons; installation problems, back out production by another well in the same field, depletion and
salt plugging problems, a sidetrack drilled to increase flow or intermittent production used when the
bottomhole pressure is low.

The NN model will not be learning correctly when the well is not producing and it will look like liquid
loading has already occurred when this is not the case, so the 0 values have been omitted by taking
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the average of the value before and after the 0.
Moreover when a well is not producing at its capacity for a certain pressure another EoFL technique

might have been used to solve the issue, for example a compressor. When a tight reservoir is con-
sidered, fraccing may be a solution, also after some years of production. These stimulation methods
are seen in the production profile, but will only cause confusing when training NN. Therefore these
events are not wanted as input data in the training program. Besides, looking at the production profile
described in the previous chapter, the phase most important factor in predicting the liquid loading
moment will be the decline phase. The plateau phase is taken into account too since the longer the
plateau lasts, the later liquid loading will occur. The other production data previous to this phase have
been neglected manually before training NN. Additionally the intermittent production after liquid load-
ing and the production data after using an EoFL technique have been erased as well. It was seen that
the performance of the forecast was better than when including this data.

From the original 64 wells, 40 wells are used for training. This decrease of input wells occurred
during pre-processing, including missing data of the up-time or a different tubing size than selected etc.
The decrease is also caused by wells that produced only for 1 or 2 years. Their production decline was
almost a straight line down and therefore not representable for the learning process. The performance
of the training is increased by using good representable production profiles.

Smoothing Filter
To remove large peaks a smoothing filter was used. Several filters were considered, namely moving
average, Lowess, Loess and Savitzky-Golay filtering.

Moving average is a type of low pass filter that transforms the time series monthly production data
into smooth trends [Chakra et al., 2013]. From [Smith, 1997] is learned that the moving average is
the most common filter, mainly because of it’s simplicity and because it is optimal in reducing random
noise while retaining a sharp step response. This filter does weighted averaging of past data points
within a specified time span to generate a smoothed estimate of a time series. By doing so, it loses
data when averaging. The span ranged from 6 to 10 months and an accurate prediction of the month
in which liquid loading occurs is lost.

Therefore a different filter was needed. Lowess and Loess showed a smooth curve as well. The
names Lowess and Loess are derived from the term ”locally weighted scatter plot smooth”, as both
methods use locally weighted linear regression to smooth data. The smoothing process is considered
local because, like the moving average method, each smoothed value is determined by neighboring
data points defined within the span. The process is weighted because the toolbox defines a regression
weight function for the data points contained within the span. Finally, the methods are differentiated
by the model used in the regression: Lowess uses a linear polynomial, while Loess uses a quadratic
polynomial [MATLAB®, 2016d].

Savitzky-Golay filtering can be thought of as a generalized moving average. The filter coefficients
are derived by performing an unweighted linear least-squares fit using a polynomial of a given degree.
For this reason, a Savitzky-Golay filter is also called a digital smoothing polynomial filter or a least-
squares smoothing filter. A higher degree polynomial makes it possible to achieve a high level of
smoothing without attenuation of data features [MATLAB®, 2016d].

The Lowess filter was proven to be best. The polynomial filters may give negative flow rates when
filtering on the lower flow rate values. The Lowess filter did not show any negative value, while the
Loess and Savitzky-Golay filters showed some negative values and were therefore not chosen as the
filter for the production data.

The Lowess filter with a span of 7 is shown for one of the wells in Figure 4.5. The Savitzky-Golay
is shown in Figure 4.6 showing a large negative value.

Logarithm
As the logarithmic data gives an almost straight curve, as can be seen in Figure 4.7, the option was
presented to train the NN on the logarithmic scale to get a higher performance. It is believed that with
a smooth curve the training is more accurate.

Logarithmic Return
The logarithmic return will give the difference between a data point and the next. The difference may
give a better indication of the liquid loading moment, as the flow rate seems to change rapidly for many
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Figure 4.5: The production profile for one of the wells is shown for both the filtered and raw data by the Lowess filter.
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Figure 4.6: The production profile for one of the wells is shown for both the filtered and raw data by the Savitzky-Golay filter.
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Figure 4.7: The production profile of one of the wells is shown with the logarithm on the production rate.
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Figure 4.8: The production profile of one of the wells is shown with the log return on the production rate.

wells when liquid loading occurs. The log return is computed as shown in Equation 4.2 and for one of
the wells the log return graph is shown in Figure 4.8.

𝑟፭ = 𝑙𝑜𝑔(
𝑄፭
𝑄፭ዅኻ

) (4.2)

where 𝑟 is the log return, 𝑄 the flow rate and 𝑡 is the time-step.

Normalization
Normalization is a process of standardizing the possible numerical range of the input data. It enhances
the fairness of training by preventing an input with large values from swamping out another input
that is equally important but with smaller values. Normalization is also recommended because the
network training parameters can be tuned for a given range of input data; thus, the training process
can be carried over to similar tasks, for example oil production instead of gas production [Patro and
Sahu, 2015]. Linear normalization was not possible as the values between the highest producing
well and the well producing the least amount is too large. Namely the smallest data point was 20
times smaller than the largest data point. Therefore normalization using the logarithm of the minimum
and maximum values was taken. The maximum value of the difference between the maximum and
minimum production data point has a value of 9.84𝑒. Equation 4.3 shows how the data is normalized
using this logarithm form. By doing so the data was normalized between 0 and 1 and the largest point
is 1.2 times larger than the smallest point. This equation was used to normalize all the input and the
output variables of NN. The method processes the input variable without any loss of information and
it’s transform is mathematically reversible.

𝑥ᖣ = 𝑙𝑜𝑔(𝑚𝑎𝑥(𝑥) − 𝑚𝑖𝑛(𝑥))
𝑙𝑜𝑔(9.84𝑒)

𝑥
𝑚𝑎𝑥(𝑥) − 𝑚𝑖𝑛(𝑥) (4.3)

where 𝑥ᖣ is the normalized input/output vector and 𝑥 is the original input/output vector. This
normalization process was applied to the whole data sets.

4.2.3. Training Function
The training of a multi-layer network is formulated as a nonlinear optimization problem with respect to
the weights. There are various methods that can be applied, in this case the MATLAB® toolbox is used
to train the network. Unless otherwise stated the default options are used of this toolbox.

The network training function is the Levenberg-Marquardt method, which is a second-order gradi-
ent. Levenberg-Marquardt updates weight and bias values according to Levenberg-Marquardt optimiza-
tion. It is generally the fastest backpropagation algorithm in the toolbox, and therefore recommended
as a first-choice algorithm, though it does require more memory than other methods [MATLAB®, 2016f].
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The backpropagation learning process sends the input values forward through the network and com-
putes the difference between the calculated output and the corresponding desired target. Based on
this difference the weights between the neurons update up to the moment the computed output val-
ues best approximate the desired target values [Rojas, 1996]. Two other optimization methods were
considered; the scaled conjugate gradient backpropagation and the Bayesian regularization backpropa-
gation. The scaled conjugate gradient is more suitable in low memory situation and the Bayesian takes
a longer, but could be better for challenging problems [MATLAB®, 2016f]. Both were less efficient.

The network will stop the training when 35 validation checks are reached, this means that the
error in the validation increased during these 35 iterations. The performance, calculated by the mean
squared error, gives an indication of how well the prediction was made. The interface of the MATLAB®

toolbox that was used to create the neural network is shown in the Appendix.

4.2.4. Training, Validation & Testing
The historical data is used for training, validation and testing. In doing so the complete data set is
divided into these 3 segments. The training set is the data set that is used for training, thus to adjust
the weights on the neural network. The validation set is used to minimize overfitting. The weights of
the network are not adjusted with this data set, it is just verifying that any increase in accuracy over
the training data set actually yields an increase in accuracy over a data set that has not been seen by
the network before, or at least the network hasn’t trained on. If the accuracy over the training data set
increases, but the accuracy over then validation data set stays the same or decreases, then overfitting
occurs and training should be stopped. Thus the validation set indicates whether the learning of the
network can be finished. At last the testing set is the data set that is used only for testing the final
solution in order to confirm the actual predictive power of the network on a data set that was not used
in neither the training and the validation process [Kooijman, 2011]. In this case 70% of the data will
be used for training, 15% for validation and 15% for testing.

There are several different ways in dividing the data set in these ratios. Division could be done in
blocks, randomly or interleaved. The division by interleaved data points is chosen as the data sets are
now equally divided during production time, which will give the best result. Division in blocks has the
training data in the first 70% of points, the validation in the next 15% and the testing set in the last
15% of data points. This results in training in the decline phase and not in the liquid loading phase and
training can be misleading. Random division could end up in different performances for each training,
which is not wished for. The way the interleaved is divided over the data set is shown in Figure 4.9.

4.2.5. Hidden Layers & Hidden Neurons
The multi-layer neural network can contain only one hidden layer, which can give a good result, but
more hidden layers can give a better fit, though the training takes more time. The number of hidden
neurons in the hidden layer has an influence on the generalization of the network. Too many hidden
neurons create over-fitting, which causes the network to memorize results instead of generalizing.
Working with too few neurons will result in a network that is not able to learn the correct input and
output algorithm. An optimum number of hidden neurons is therefore essential [Kooijman, 2011].
From literature several rules of thumb were inspected. The first one is a rough approximation by the
geometric pyramid rule. For a three layered network (meaning an input, hidden and output layer) with
𝑛 input neurons and 𝑚 output neurons, the hidden layer would have √(𝑛 ×𝑚) neurons [Kaastra and
Boyd, 1995]. Another rule of thumb’s states that the number of hidden-layer neurons should be about
75% of the input variables, while again another one suggest that the number of hidden-layer neurons
should be approximately 50% of the total number of input and output variables [Chakra et al., 2013].
From these rules one can conclude that it is assumed that the training set is at least twice as large as
the number of weights. If this is not the case, then these rules of thumb can quickly lead to overfitted
models since the number of hidden neurons is directly dependent on the number of input neurons and
thus the weights. Using the first rule of thumb, training the neural network was started and modified
when needed.

The options considered when doing a forecast vary from how many months are used for the pre-
diction and how many months can be predicted. As many as possible is the aim, but too many will
give a forecast of already predicted data. This will give a larger error and will not help improve the
performance. Thus a optimum number of months is therefore essential too.



24 4. Methodology

0 10 20 30 40 50 60 70 80 90 100 110

Month

0

1

2

3

4

5

6

7

8

9

P
ro

du
ct

io
n 

ra
te

 [N
m

3
/m

on
th

]

×107 Data division between Training, Validation and Testing sets

Training
Validation
Testing

Figure 4.9: The production data is divided interleaved among training, validation and testing sets.

4.2.6. Activation Function
The activation function is applied to the weighted input of a neuron to produce the final output. Each
network only has one activation function, which is used for all hidden neurons in that network. The
activation function is important when creating a neural networks for two reasons. Firstly, if there were
no activation functions, the whole neural network can be reduced to a group of linear function of the
network input. So, without activation functions, a neural network can not learn non-linear relationships.
And secondly, each neuron can be seen as recognizing a certain feature, with an activation of zero
indicating the absence of that feature [Kriesel, 2005].

There are three different activation functions that can be used in the MATLAB® toolbox when training
the neural network; the logistic transfer function (logsig), the hyperbolic tangent (tanh or tansig) and
the linear function (purelin) [MATLAB®, 2016b], Figure 4.10.

For the hidden layers, a nonlinear transfer function must be used, thus the purelin function is not
an option. For the error backpropagation that is used in this research an activation function that
is differentiable, smooth, monotonic, and bounded must be used. Both the logsig and tanh fit the
requirements.

Figure 4.10: Three activation functions; logsig, tansig and purelin.
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4.3. Predicting liquid loading
When an accurate forecast of the production rate is made, then the liquid loading moment can be
predicted. Coleman criterion was introduced to indicate the onset of liquid loading. The table showing
the Coleman rates for each well is shown in the Appendix. When the predicted flow rate falls below the
Coleman rate, the liquid loading alerter is triggered. In the month the alerter is triggered the system
gives the expected month in which liquid loading happens. Every month a new prediction can be made
until it finds the true value for the liquid loading moment.

The results of the different neural nets, including the variable training parameters, the result of the
most accurate forecast and the liquid loading prediction are described in the next chapter.





5
Results

5.1. Production Analysis
5.1.1. Influence of Field Size on the Liquid Loading Moment
A study was conducted on the size of the field and the moment when a well is liquid loading. Figure
5.1 shows a column chart. The months in which a well is liquid loading is shown on the x-axis and the
y-axis shows how many wells fall in this range. The three colors show a small, medium and large field.
A small field means a GIIP lower than 10 bcm, a medium has a GIIP between 10 and 20 bcm, and a
GIIP larger than 20 bcm is a large field. As expected the larger the GIIP of a field, the more a well
can produce and the longer it takes for a well to start liquid loading. Off course it differs per well how
much a well can produce and the quality of the reservoir has a large influence, but the trend can be
seen for these 64 wells.

Figure 5.1: The influence of field size on the liquid loading moment.

5.1.2. Volume Gain by Velocity String and Foam
The volume gain of all wells was investigated. To understand the effectiveness of the different EoFL
techniques, a velocity string or foam (both batch and continuous) are shown in the column chart 5.2.
From this chart it can be concluded that for these wells the gain is expected to be 10 to 50 million mኽ
as about 45% lies in this range. However other wells produce more than 100 or even 200 million mኽ.
The wide range is due to the dependency on well and environmental conditions. It can also be seen
that, as expected, continuous foam and velocity string will give a higher cumulative production than
batch foam. Two foam projects are found to be very effective with a cumulative production higher than
200 million mኽ.

27
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Figure 5.2: The volume gain of ዀኾ wells by a velocity string, batch foam or continuous foam.

5.1.3. Actual Volume Gain compared to Expected Values
From the database the volume gains expected by the operator were gathered. An interesting insight
was found when comparing it to the cumulative production that was actually gained by an EoFL tech-
nique. For velocity strings one can see from Figure 5.3 that the expected value determined by operators
before the work-over was more than the volume actually gained. Several wells are still flowing, which
are therefore still uncertain if they rise above expectation. However from the graph this is not likely.
Half of the foam wells however produce better than expected. This is useful insight as it means that
foam projects are very effective. As they are cheaper than velocity strings, foam could be an option
first. Note that when the well is dead implementing a velocity string is properly more effective, as the
foam may not work when there is too much water in the well.

Figure 5.3: The volume gain of the actual gain compared to the expectations of the operator before stimulation of the well.
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5.1.4. TNO Deliquification Tool
With the TNO tool an estimation was conducted on the gain by an EoFL technique. The tool calculates
from the parameters described in the previous section the production gain by a certain EoFL technique
and the amount that would have been produced without mitigation. 15 wells were studied by the tool.
11 wells had a velocity string installed and in 4 wells foam was injected. The result can be seen in
Figure 5.4. In this figure the cumulative production is shown for all 15 wells. All wells have 3 bars
representing the cumulative production calculated by the tool, the actual volume gain up til today and
the expectation of the operator before mitigation. From these 15 wells it can be concluded that the
simulations from both the operator and the TNO deliquification tool predict a higher cumulative gas
production than that was actually produced by an EoFL technique. The reasons of this difference are
explained in the next chapter.

Figure 5.4: The volume gain estimated by the TNO deliquification tool, the actual gained volume and the expectations of the
operator before using a velocity string (first ኻኻ wells) or foam (last ኾ wells).

5.1.5. Sizing Tubing
A difficult matter is choosing the tubing size. The deliquification tool shows the cumulative gain versus
the producing years for different velocity string sizes. Two wells were considered and the tubing size
was varied between 2ኽዂ , 2


ዂ , 3

ኻ
ኼ and 4

ኻ
ኼ . The first well is shown in Figure 5.5. The smaller the velocity

string the higher the cumulative gain and vice versa. This well had a velocity string installed with a
tubing size of 3ኻኼ inch in diameter, representing the second blue graph from left. This size was indeed
the best option as it gives the highest cumulative production in the least amount of years. A smaller
tubing size gives you a little larger gain, but with only a maximum of 10 million Nmኽ in about 2 years.
Economically wise it is best to make profit as fast as possible.

In figure 5.6 the next well is shown. This well had a velocity string installed with a tubing size of
2ኽዂ inch in diameter, representing the fourth blue graph from left. This tubing size gives the highest
return in less than 3 years. Therefore this is a very suitable size. However as the gain is not even 5
million Nmኽ less when producing 2 years with a velocity string size of 2ዂ , this would also have been a
suitable candidate.
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Figure 5.5: The influence of the velocity string diameter on the cumulative production and the producing years. The blue graphs
show the volume gain by the different sizes of velocity strings (ኼ ᎵᎺ , ኼ
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Figure 5.6: The influence of the velocity string diameter on the cumulative production and the producing years. The blue graphs
show the volume gain by the different sizes of velocity strings (ኼ ᎵᎺ , ኼ
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largest to the smallest diameter. The ኼ ᎵᎺ and ኼ
Ꮉ
Ꮊ are showing the highest profit.

5.1.6. Some Examples
To illustrate the matter into further detail 2 wells are described in the succeeding sections. The first
one has a velocity string implemented and the second one has had foam injection.

Well 3
A velocity string was implemented in well 3 with a diameter of 3.5 inch. The left Figure 5.7 shows the
TPC curve of the well and the right Figure 5.8 shows the TPC after the installation of a velocity string.
The IPR curve does not change as reservoir pressure stays the same, but the TPC curve has moved
to the left due to the smaller tubing size. The well has a lower critical rate than without the velocity
string and therefore the well can produce for a longer period in time.

The TPC curve already looks promising. Next the simulation is run for well 3. As expected the
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Figure 5.7: The TPC and IPR curve for well ኽ with-
out mitigation.
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Figure 5.8: The TPC and IPR curve for well ኽ with
a velocity string.

abandonment pressure is lower for a smaller tubing size and the critical flow rate is of lower value.
This can be seen in Figure 5.9, where the gas rate is plotted versus the reservoir pressure. Without
mitigation the abandonment pressure is around 86 bar and the flow rate 130, 000 mኽ per day and
after installing a velocity string the abandonment pressure is around 46 bar and the critical flow rate at
20, 000 mኽ per day. The graph on the right side, Figure 5.10 shows the years one can keep producing
with the mitigation technique versus the reservoir pressure. The expected producing time is 2.5 years
more with a velocity string.

Figure 5.9: The flow rate plotted versus the reser-
voir pressure for well ኽ.

Figure 5.10: The reservoir pressure plotted versus
the producing years for well ኽ.

The operator is most interested in the larger amount of gas that is produced due to a velocity string.
The tool shows a successful operation with a volume gain of 41 million mኽ. The volume gain can be
seen in Figure 5.11, where the cumulative gas production in million is plotted versus the time in years.

The production data of the well is compared to the tool’s simulation. Both graphs can be seen in
Figure 5.12. The tool curve is the ideal case, while the actual curve fluctuates a lot. Still the curves
are very alike in values and it proves an accurate simulation of the TNO tool. It seems however that,
as was seen before, there is a trend of the tool predicting a bit higher than the actual gain. This issue
is mainly due to well problems and will be discussed in more detail in the next chapter.

It can be concluded that the velocity string proved to be effective for this well. The well produced
34.7 million mኽ in 2.8 years, and is still producing. The expected gain by the operator was 65 million
mኽ, but it is not surprising that the tool predicts a higher volume gain than the operator as the well
is still in production. The investment made was about 1.5 million and the NPV was 5.3 million euro’s.
Thus a nice profit is already made.
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Figure 5.11: The cumulative production versus the producing years is simulated with and without mitigation for well ኽ.

Figure 5.12: The production rate per day simulated with velocity string by the TNO deliquification tool and the actual production
rate per day after installing a velocity string.

Well 14
The next well considered is a foam well. Foam was injected about two years ago and the well is still
producing. The TPC and IPR curve are shown in Figure 5.13. Unfortunately it is not possible to make
a new TPC curve after foam injection with the tool.

Next the simulation is run for well 14. As expected the abandonment pressure is lower after the
foam is injected and the critical flow rate has decreased. This can be seen in Figure 5.14, where the gas
rate is plotted versus the reservoir pressure. Without mitigation the abandonment pressure is around
28 bar and the minimum flow rate 20, 000 mኽ per day. The abandonment pressure is around 25 bar
and the critical flow rate 10, 000 mኽ per day after foam injection. Figure 5.15 shows the years the
well can keep producing with the mitigation technique versus the reservoir pressure. The expected
producing time is 2.5 years. But in this case the well would also have produced 1.5 more years without
foam. It seems that foam is injected a little too early.

When looking at the cumulative gas gained by foam injection in Figure 5.16, the gain is only 50
million mኽ higher than without foam. This is not a lot considering the long producing time of a year.
Without foam it produces about 250 million mኽ in 1.5 years. Off course production will be less when
the well has been producing for a long time, but the operator could have waited here. After 1 year the
tool shows a successful operation of foam injection with a volume gain of exactly 47.8 million mኽ.
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Figure 5.13: The TPC and IPR curve for well ኻኾ without mitigation.

Figure 5.14: The flow rate plotted versus the reser-
voir pressure for well ኻኾ.

Figure 5.15: The reservoir pressure plotted versus
the producing years for well ኻኾ.

The production data of the well is compared to the tool’s simulation. This comparison confirms the
presumption of the premature injection of foam. Figure 5.17 shows the production profile simulated by
the tool and the actual production curve. The tool’s prediction consists of two parts; the gray line shows
the curve without mitigation and the dark blue line shows the production rate with foam injection. The
actual production rate is less than half the rate the tool predicts. The conditions inserted into the tool
give a high production, but in the field this is not the case. It may be that the LGR was higher or
other conditions were not accurate. If this is the case, it may be the reason for the tool to predict
foam injection to be useful at a later moment than the operator does. The well produces in total a
164 million after foam is injected. This gain is represented in the positive NPV. However the operator
expected a cumulative production of 310 in these two and a half years. The well is still producing, so
the production will still increase, but from the simulation it can be said that foam injection was injected
too early or the tool predicts too optimistic with the given parameters.
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Figure 5.16: The cumulative production versus the producing years is simulated with and without mitigation for well ኻኾ.

Figure 5.17: The production rate per day simulated with and without mitigation by the TNO deliquification tool and the actual
production rate after foam injection.

5.1.7. Net Present Value
In this section the net present value (NPV) is calculated for the 15 wells that are also evaluated with
the tool. The net present value is calculated by Equation 5.1 with an discount rate of 8%.

𝑁𝑃𝑉 =
ፍ

∑
፭ኺ

𝑅፭
(1 + 𝑖)፭ (5.1)

where 𝑁 is the total number of periods, 𝑡 the time of the cash flow, 𝑖 is the discount rate and 𝑅፭ is
the net cash flow at time 𝑡.

From EBN the gas price in €/MWh is received per month. The heating value is found for each well,
ranging from 36.7 to 40.5 MJ/mኽ. Note that 1 kWh = 3.6 MJ. The NPV can be calculated with the
actual gas rates for the wells that have stopped production, but for the still producing wells the TNO’s
prediction of future gas rates had to be included in the calculation. In Figure 5.18 the NPV’s per well
is shown. 9 mitigation projects were successful and 6 of them were not.
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Figure 5.18: The net present value calculated for the ኻ wells that were studied. The first ኻኻ wells had a velocity string installed
and for the last ኾ wells the profit was made by injecting foam.



36 5. Results

5.2. Choosing the best Neural Network
The quality of the network performance depends on input data, the number of input neurons, hidden
neurons, the activation function and months being predicted. The only way to determine the right
parameters and the best performance is the method of trial and error.

5.2.1. Auto-correlation
The auto-correlation shows which month is most important in the prediction of the month that is
predicted. This could be the month just previous to the month predicted, which is the case for the two
wells shown in Figure 5.19 and Figure 5.20. The value on the y-axis shows the influence the month
has to the predicted month (the first bar). It can also happen that the months in the same period the
year before are most important. For example when a lot of maintenance done in the summer months,
the winter months the year before are in that case more similar and thus have greater influence to the
month predicted in the winter the year after. This is shown in Figure 5.21. From all 40 wells it can be
concluded that the first option is the case for 95% of the wells, therefore seasonal dependency is not
taken into account when training NN.
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Figure 5.19: The autocorrelation plot shows a well where
the month being predicted is mostly depended on its pre-
vious month, then the month before that etc. The graphs
shows a well where ኼ years influence the prediction.
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Figure 5.20: The autocorrelation plot shows a well where
the month being predicted is mostly depended on its pre-
vious month, then the month before that etc. The graph
shows a well where more than ኽ years influence the pre-
diction.
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Figure 5.21: The autocorrelation plot shows a well of which the month being predicted is seasonally dependent.

The auto-correlation plots above show how many historical months should be taken into account for
the training process. Figure 5.19 and Figure 5.21 show that for these wells 2 years are important when
forecasting the gas rate for a certain month, while Figure 5.20 shows that 3 years are of importance.
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So from the auto-correlation plots for all wells it was concluded that for about 75% of the wells the
prediction was influenced by 2 to 3 years of the historical data while for the other wells only 1 or 2
years should be taken into account for. More months would have a negative effect on the prediction.
The trainings were started with an input of 3 years and compared to the performance of the trainings
including an input of 2 years.

5.2.2. Designing Neural Networks
The hidden layer(s) provide the network with its ability to generalize. A neural network with one hidden
layer with a sufficient number of hidden neurons should be capable of approximating any continuous
function. In practice, networks with one or two hidden layers are widely used an have performed very
well [Kaastra and Boyd, 1995]. Because of this, and the fact that an increasing the number of hidden
layers also increases the computation time and the danger of overfitting, ANN was trained with 1 and
2 layers.

The hidden neurons are varied in one or two hidden layers. As a start the number of neurons
trained were 5, 10, 15, 20, 25, 30 and 40. From this the best network was chosen and more trainings
were performed with 50, 60, 75, 100 and 150 neurons. The optimum number of neurons is determined
on the minimum value of the best validation performance. In other words the lowest mean squared
error. Note that every training is different and one training could have a lucky good or bad performance,
therefore each training with a certain amount of neurons was done 5 times and the one with the lowest
mean squared error and thus the best performance was taken.

The activation function for each neuron gives the weight to the input signal. As described in the
previous chapter there are two activation function that can be used for this network. The tanh function
and the logsig function.

All these parameters were taken into account when training and varied along the process. Figure
5.22 shows the performance plot of the trainings, including four curves. These curves include the 1
and 2 layers that were trained, the neurons trained ranged from 5 to 40 neurons and both activation
functions. First of all it can be concluded from the graph that a 2 layered network has a better per-
formance. This is not surprising as 2 hidden layers can capture more non-linearity and handle more
complex data. The 1-layered-logsig curve has a surprisingly low MSE for 15 neurons, but climbs back
up with a higher number of neurons. It may just have been a lucky shot. For a higher number of
neurons the tansig performs better than the logsig curve. Thus tansig is preferred. Adding to this
is the fact that the logistic function will generate values close to 0 if the argument of the function is
substantially negative. Thus, the output of this very hidden neuron will be close to zero, and thereby
lowering the learning rate for all subsequent weights. This means that it will almost stop learning. The
tanh function, however, will in the same situation generate a value close to −1, and thus will maintain
learning.

It can be concluded that the 2-layered-tansig-network is the best network to take. Especially the
network with 20 neurons or more showed a lower MSE than the other three curves. From this graph the
network with 30 neurons showed the best performance. However more trainings were performed with
a higher number of neurons and the performance can be seen in Figure 5.23. The MSE even lowered for
these trainings. The networks with 75 neurons and 100 neurons show similar results, but the network
with 75 has a slightly lower MSE with 5.9484𝑒ዅኺ. than the one of 100 with an MSE of5.9498𝑒ዅኺ.. One
trial was also done with a 150 neurons, MSE however did not improve (6.1653𝑒ዅኺ.) and as the training
takes 20 hours, more trainings with 150 neurons was not done. It seems that a network with more
neurons does not give a improvement in MSE and a training that takes less time is preferred. Note
that if more trainings than 5 trials are conducted per set of parameters the more accurate the result
will be and it may be that the network with a 100 or 150 neurons were better after all, but a limit has
to be drawn time wise and of the capacity of the consumer computer. This is discussed further in the
next chapter. Next training was performed with a network with 75 neurons that has 2 years as input
data. The results were compared to the one with 3 years, but did not show an improvement as it had
a MSE of 7.3𝑒ዅኺ.. Thus to conclude: 2-layered-tansig-network with 75 neurons trained on 36 months
of historic data was chosen as the best network.
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Figure 5.22: Sensitivity analysis based on the number of layers, the activation function and the number of neurons is shown.
The ኼ-layered-tansig-network showing the lowest MSE.
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Figure 5.23: Sensitivity analysis based on a ኼ-layered-tansig-network.  neurons show the lowest MSE with a value of
.ዃኾዂኾ፞ᎽᎲ.Ꮇ and thus the best performance.

5.2.3. Performance and Regression Analysis

The performance plot shows three curves: a training, validation and testing curve. One to fit the models
and make changes, one to compare models, and one to demonstrate the effectiveness of that model.
When training progresses the curves naturally drop with each iteration. When the validation error
stops dropping and starts to increase, while the training error is steadily decreasing, then a situation
of overfitting may have occurred. The stopping criterion of the training is before overfitting starts and
is the moment where the error of the validation curve reaches its minimum error [Kooijman, 2011].
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The training of the network can be considered reasonable when the plots indicate the following:

• The mean-square error is small

• The test set error and validation set error have similar characteristics

• No significant overfitting has occurred

With the regression plot the prediction performance of the neural network is assessed. The plot
contains the training, validation, testing curves and a plot including all curves. The dashed line indicates
the perfect result where the output is similar with the target. The solid line represents the best possible
fit of the data between the output and the target. The mean squared error gives an indication of the
linear relationship between the output and target where R = 1 indicating an exact relationship and R
= 0 that there is no linear relationship between output and target [MATLAB®, 2016e].

As said before, the network with the optimum number of neurons will be used here to explain the
performance and the regression plot. The performance plot is shown in Figure 5.24 and its regression
plot is shown below the performance plot in Figure 5.25.
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Figure 5.24: The best validation performance plot for the network with  neurons. The low mean squared error and the
training, validation and testing curves show a good training performance.

This figure does not indicate any major problems with the training. The MSE is small, the validation
and test curves are very similar and the model has stopped before overfitting occurred, namely at
epoch 8, before the validation curve increases.

The regression plot shows a good fit. The training, validation and test regressions are above 0.99.
The model is based on many data points, so many that the Y=T curve is not visible anymore. A lot of
data means that the result is very reliable.
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Figure 5.25: The regression plot for the neural network with  neurons.

5.2.4. Logarithm & Log Return
The network was trained with the logarithmic data. Note that 3 trainings were done and that the
validation checks were reduced to 10 checks due to the long computation time. The performance
curve in Figure 5.26 shows that the training was not as good as without logarithmic data. The MSE can
not be compared because of different input data, but the validation and test set error are relatively far
apart. Also both curves fluctuate a lot before training is stopped, this could mean overfitting has already
occurred. Next when looking at the regression plot in Figure 5.27 one can also conclude training is less
good than without logarithmic data. The regression is still above 0.99, but there a many points around
0 and the relation between the input and target is worst than the previous example. Thus the network
is insufficient to be used as prediction model. As an example, two wells of which the forecast of the
flow rate was performed by a NN that was trained on logarithmic data can be seen in the Appendix.

Next to the network trained on logarithmic data, the log return network did not show any improve-
ments. The validation performance plot and the regression plot are shown in the Appendix.

5.3. Production Forecast
The optimum neural network has been chosen. It contains 2 layers, 75 neurons with the tanh functions
and it has 36 months as historical production rates taken into account. The forecast can now be done.
How well is the performance of the forecast? Can one use it to predict future flow rates and above all
the liquid loading moment? In the next four figures several example wells are shown. In blue the raw
data and in red the filtered data. The moment of prediction starts where the dotted line begins. The
dotted green line is the predicted flow rates predicting 1 year ahead.
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Figure 5.26: The validation plot for the logarithmic network.
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Figure 5.27: The regression plot for the logarithmic network.
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Figure 5.28 shows the prediction of well 6. One can see that the production rate is predicted very
well. The error between the the actual rate and the predicted rate is only 4%. Another example is
shown in Figure 5.29. This well has a very accurate prediction, with only a 1% error. One might
think though that this pattern is more easy for the NN to learn, as the prediction is quite a straight
line. But the thought is blown away when looking at Figure 5.30. The production profile shows a very
fluctuating production profile. The predicted profile shows a similar fluctuation and an error of again
only 4% is received. The trained network proves to be very good and can predict the production rate
very accurately.
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Figure 5.28: The actual and the predicted flow rate by ANN for well 6.
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Figure 5.29: The actual and the predicted flow rate by ANN for well 25.
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Figure 5.30: The actual and the predicted flow rate by ANN for well 36.

Unfortunately some wells were not as good predicted as the three wells above. In Figure 5.31
well 8 is shown and the prediction is not that good. The network did not predict the drop in month
42. The error is therefore almost 60%. The result is not strange though. The network trained well
on the production curve, but it does not predict a sudden decrease in flow rate when trained on this
production curve. Still it can be said that overall the flow rate is predicted very accurately.
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Figure 5.31: The actual and the predicted flow rate by ANN for well 8.
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5.4. Predicting Liquid Loading
The network makes an accurate forecast and will be used as an alerter to predict liquid loading in a
specific month. Well 1 is taken as example well, this well is liquid loading in month 57. Figure 5.32
shows this well. The prediction prior to the liquid loading month is shown on the x-axis, thus the actual
month in which the alerter is making the prediction. The prediction is done 12 months in advance.
The y-axis presents the prediction error that is to say the predicted month before or after the actual
liquid loading moment. Month 0 represents the liquid loading month. Showing therefore the months
in negative if predicted before liquid loading and positive when predicted after liquid loading.

For well 1 this means that the alerter predicted liquid loading to happen 12 months before liquid
loading occurs. However it predicted liquid loading too early by 9 months. Thus in month 45 liq-
uid loading was predicted in month 48. Then 4 months in advance the prediction is changed from
under-prediction to over-prediction. The over-prediction is only by 2 months and 2 months before
liquid loading the prediction finds the correct liquid loading moment. So even though there is a large
fluctuation, the operator is alerted in advance. No stimulation was done yet for this well and it stopped
producing after 98 months. In between month 57 and 98 the well produced only 4 million Nmኽ on
average by intermittent production which can be seen in the production profile in Figure 4.2. Then
another 100 months past by before a velocity string was installed. With the alerter this could have
been done a lot more efficiently.
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Figure 5.32: The prediction error in months versus the month in which the prediction is made prior to liquid loading is shown
for well ኻ. Liquid loading occurs in month ኺ.

A second prediction is shown 5.33. Well 26 is liquid loading in month 65. For well 26 the alerter
predicted liquid loading to happen 12month prior to liquid loading by only one month under-prediction.
This is a very good prediction. Thus in month 53 liquid loading was predicted in month 64. Then 5
months prior to liquid loading the alerter adjust its prediction to month 65, being the exact liquid loading
month (at the 0 point). Closer to the event it shows some over-prediction with one or two months, but
it finds the true value again. The small fluctuation are not of great importance. The fact stays that the
well shows an accurate prediction of the liquid loading moment. The operator will know 12 months
in advance that it needs to be careful for liquid loading to happen. The operator has a lot of time to
start thinking about mitigation techniques. Again in the real scenario the operator waited too long,
namely until month 172 before injecting foam, while the well was producing less than 1 million Nmኽ
per month. The well is still flowing with the same amount of production, so foam increased production
time.

The prediction plot for all wells is seen in Figure 5.34. The plot is similar to the previous prediction
plot only a second y-axis is implemented showing the number of wells that are predicting in a certain
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Figure 5.33: The prediction error in months versus the month in which the prediction is made prior to liquid loading is shown
for well ኼዀ. Liquid loading occurs in month ኺ.

month prior to liquid loading. The prediction shows a similar trend to what was seen for well 1 and
well 26. About 12 months prior to liquid loading the alert seems to be under-predicting. A few months
prior to the event the alerter seems to be over-predicting. Note however the range in which the well
can predict. 12 months prior to liquid loading the well can only under-predict, while a few months prior
to liquid loading the chance of over-prediction is high. This would mean that 4 or 5 months in advance
it would be the best time to predict liquid loading. Another feature that can be seen is that only 5 wells
are predicting liquid loading 12 months in advance, the number steadily increases, and 1 or 2 months
prior to the event 35 wells predict liquid loading. For 5 wells liquid loading is only predicted correctly
one month before liquid loading occurs, they were over-predicting. Also note that predictions before
the 12 months prior to liquid loading are not included in the figure. The alerter corrects itself on the
false prediction, but they are misleading.

Thus the alerter is accurate, but for some wells only a short time in advance. The implications of
this is discussed in the next chapter.
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Figure 5.34: The prediction error in months versus the month in which the prediction is made prior to liquid loading is shown
for all wells. Liquid loading happens at month ኺ. The red curve shows the number of wells that are predicting.



6
Discussion

6.1. Analysis EOFL techniques
6.1.1. Data Mining
The need for EoFL techniques is becoming more important as gas fields get into the mature or tail-
end production phase. It is challenging to quantify the gain of these techniques. Furthermore data
required to quantify the gain of these techniques is sometimes not available. The gathering of data
and keeping it in a big data base is not always properly done, let alone in the early days. However
research should always be done as the information from data could be very valuable. Recent projects
are already mapped better with the help of better technology and large databases that can be build
nowadays. Next to this research will improve when all operator are willing to share information about
their EoFL projects. This research made an effective step in quantifying the value of EoFL techniques
with the available data.

6.1.2. Sensitivity Study TNO Tool
For one of the wells a sensitivity study was done by means of a tornado plot. The parameters were
varied based on the accuracy of measurement. This accuracy was extensively discussed with a field
engineer. For the well head pressure, reservoir pressure, gas density, reservoir temperature, liquid gas
ratio, A and F factors the following percentages were applied respectively; 2%, 2%, 5%, 1%, 20%,
10% and 10%. The tornado plot is shown in Figure 6.1. As expected the reservoir pressure has a large
influence on the cumulative production. When reservoir pressure is low the drag force is insufficient
to lift liquids up. As the gas liquid ratio is difficult to measure accurately, this factor was varied to the
actual cumulative production by 20% and thus has a large influence on the cumulative production too.
It can also be seen that the laminar flow factor is of importance too. Therefore it is important that the
operator measures this factor accurately. The reservoir temperature and the friction factor do not have
a large influence on the cumulative production.

The abandonment pressure will indicate at what reservoir pressure liquid loading occurs. To con-
tinue producing it is important to keep pressure high. The abandonment pressure is largely dependent
on the liquid gas ratio as can be seen in Figure 6.2. A large liquid column will create a certain back-
pressure and the draw-down pressure will therefore be lower and production ceases. It is apparent
that reservoir pressure does not have a large influence on the abandonment pressure. This could be
due to the small percentage that is given to the reservoir pressure.

The tornado plots of the relative gain by mitigation, the ultimate recovery and the years are shown
in the Appendix.
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Figure 6.1: The sensitivity of the given parameters to the cumulative production.

Figure 6.2: The sensitivity of the given parameters to the abandonment pressure.

6.1.3. Difference Actual and Prediction
The difference between actual and predicted cumulative production can vary a large amount. It is seen
that for the 15 wells that were studied the operator predicts almost always above reality. They are
very optimistic in their calculations. The tool is also optimistic for velocity string projects, however it
predicts less than a foaming well actually produces.

There are many reasons why the operator and tool predict more than the well produces. The main
issue could be maintenance. Any repairs, pipeline shutdowns, fish etc. are not taken into account when
simulating production rates. These problems decrease production enormously. Another factor could
be that the tool does not include other wells in the field. From P/Z plots the GIIP for each well is found.
When more wells are in the same field the dynamic GIIP of the well is calculated by accounting for the
amount of production it has had from the total reservoir. As this is still an estimation the tool is biased.
The reason that the tool predicts pessimistic for foaming wells could be due to the assumption of foam
giving a 50% decrease in critical rate. When the critical rate is decreased by a larger percentage the
production will be predicted higher and vice versa.

Wells 5 and 7 from Figure 5.4 had a very low production after the installation of a velocity string.
They are not producing anymore. The gain was so low that the investment made for the mitigation
technique was not worth it. A leaking tubing was one of the reasons for the bad performance.

Well 6 and 8 were predicted way to high by the tool. Both had a velocity string installed with a
tubing size of 2ኽዂ inch. Well 6 had a former tubing with size 5 inch and well 8 with a 5.5 inch. Both had
a liner with size 7 inch. Going from these large tubing sizes to a very small velocity string one expects
a high gain. Next to this the LGR were low and the reservoir pressure at the start of the mitigation
was relatively high. These conditions together simulate a high cumulative gain. This also explains the
negative NPV values for the 4 wells. A velocity string costs a few million euro’s. The production was to
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little to compensate for this investment.
According to the tool foam was injected into well 14 too early. The well could have produced on

for another 1.7 years before it would stop producing. With foam it produced a year longer with a
cumulative amount of 48 million mኽ. This is very low compared to the predictions. It may be that
the operator should have waited with foam injection. The uncertainty here lies in the accuracy of the
data, the tool seems to predict a higher production rate than was possible for this well. As foam is
very cheap and the well did produce a fair amount the NPV turned out to be positive after these three
years.
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6.2. Artificial Neural Networks
The alerter was build on the basis of neural networks. The network is designed with 2 layers each
containing 75 neurons that use the tanh function. It takes 36 months into account when predicting the
next month. The network forecasts the production rate, showing an accurate prediction. The liquid
loading moment can be found when the flow rate falls below the critical rate calculated by the Coleman
criterion. The alerter depicts the month in which this happens. The alerter had a high accuracy, but
the network can always be improved. Several ways are discussed in this chapter. The next chapter
proposes some recommendations for optimizing NN even further.

6.2.1. Prediction Accuracy
It was seen from Figure 5.34 that the alerter predicts the month prior to liquid loading for almost all
wells accurately. However it predicts it only shortly in advance, one or two months. Only for 1/4 of
the wells it predicts liquid loading half a year prior to liquid loading. When the alerter predicts half
a year prior to the event the prediction error varies +/− 3 months. This should be suitable for an
operator. When the alerter is predicting liquid loading a few months earlier than the actual month in
which liquid loading occurs, there is no problem. From field measurements one detects liquid loading
on a short notice, which helps in deciding when to use an EoFL technique. Foam injection needs to be
done when the well is still flowing, so it is better to inject a little too early than too late. So when the
well is over-predicting it is a bigger problem. The well may already be liquid loading without a triggered
alerter. Luckily the alerter only over-predicts for a small amount of wells when predicting close to the
liquid loading moment. The risk of being to late is thus small.

The period of an accurate prediction would preferably be extended to half or a whole year. The
difficulty at the moment lies in the sharp decrease in production rate at the onset of liquid loading. The
alerter does not expect such a sudden drop and therefore only predicts liquid loading to happen when
the actual month is also at lower gas rates. This sharp drop may be less when more data points are
included, for example with daily data.

Another way to increase prediction accuracy is to increase the data by the number of wells. These
wells can be in the Netherlands or from abroad. Liquid loading is a worldwide issue and the more wells,
and thus data, can help increasing the accuracy of the prediction.

6.2.2. Daily Data
Training on daily production data can also be useful as more data is available as input. One training
was done with daily data to compare the training performance with the monthly data. In order to do
so four wells were chosen that had accurate daily data. The same network with two layers and 75
neurons with the tanh function was used. Instead of taking 3 years as input, only 1 year was taken
as the consumer computer was not capable of training a larger network memory wise. For one of the
wells the forecast of the gas flow rate per day can be seen in Figure 6.3. The same four wells were
also trained with monthly data to compare the results. The monthly data was trained with 3 years of
input data. The monthly predicted flow rates can be seen in Figure 6.4.

The forecast of daily data is very accurately. At a few data points the percentage error is very high,
but this was due to the low production on certain days. The absolute error is very low, lower than
the one of monthly data. The high error for these peaks can be solved by pre-proccessing the daily
data better, for example use a filter with a large span. The next step is to predict liquid loading with
daily data. On day 560 the alerter predicted the onset of liquid loading in month 899. The actual liquid
loading moment calculated by Coleman was on day 894. So the alerter predicted quite accurately a year
in advance. The exact moment was predicted 2.5 months prior to liquid loading. This is similar to the
predictions of the monthly forecast. However unfortunately this prediction is not accurate to field data.
The well produced with a stable flow after 900 days. When determining the liquid loading moment from
the monthly forecast, it was seen that liquid loading was suspected in month 168, meaning around day
5040. The reason for the alerter to predict liquid loading too early is the fact that the daily data needs
to be smoothed more than the monthly data. Due to the low outliers the alerter triggered too early.
Thus once again pre-proccessing is important before training daily data.

However the daily data did predict liquid loading 2.5months prior to liquid loading, while the monthly
data predicted liquid loading only 1 month before the event. Considering the fact that training was only
conducted with 4 wells, it is difficult to quantify if daily data predicts liquid loading more accurate or
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Figure 6.3: The actual daily flow rate and the daily predicted flow rate trained by NN on ኾ wells with daily input data.
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Figure 6.4: The actual monthly flow rate and the monthly predicted flow rate trained by NN on ኾ wells with monthly input data.

not. Considering the results daily data looks promising as it can predict liquid loading a longer period
in advance, but first more training needs to be conducted with a suitable filter and more wells.

6.2.3. Tubing Head Pressure
One important parameter that is missing is the flowing tubing head pressure (FTHP). The pressure
would have given extra information to the network if it was used as an input value next to the flow
rate. Two inputs may bring the forecast to a more precise solution as pressure and production rate
are coupled. When pressure decreases, the flow rate will decrease as well. However when the well is
closed-in, meaning 0 production rate, the FTHP will build-up. After start-up the production rate is then
higher in the next couple of days than before the well was closed-in. When including pressure one
needs to train the network on daily data. Unfortunately the daily pressures were incorrect for many
wells. As an inaccurate input would only confuse the training process even further, the option was
disregarded.
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6.2.4. Presence of Multiple Wells in a Field
An uncertainty factor is the presence of other wells in a wells vicinity. Thereby the production pattern
is influenced. This can to some extend been reflected in the well pressure [Chakra et al., 2013]. As
the neural network does not know the production performance is influenced by external factors the
forecast trains on the influenced production pattern. It may have been better not to be included.

6.2.5. Influence of Important Parameters
The input values for the neural network were tubing size and gas rates. Coleman et al. [Coleman et al.,
1991] states that the wellbore cross-sectional area obviously is one of the most important variables in
the critical rate calculations. Thus next to gas rates the tubing size needs to be taken into account.
Coleman et al. states that liquid/gas ratios below 22.5 bbl/MMscf, which is equal to 126.4 cmኽ/mኽ,
have no influence in determining the onset of load-up, meaning the gas flow rate is the dominant
factor. In this research the choice was therefore made to not include the LGR as an input in the neural
network. Taking along the fact that LGR’s have a large inaccuracy when measured. Due to this the
LGR will not add much to the predicting of the liquid loading moment. The paper also examined that
other variables such as temperature, gas gravity and inter-facial tension show minor influence on the
accuracy of critical rate calculations.

6.2.6. Coleman Criterion
As described before the critical rate is calculated by the Coleman Criterion. This Coleman critical rate
is calculated by Equation 2.4. The critical rate is mainly depended on the well head pressure and the
tubing size. From the TPC curve the critical rate can also be determined. All parameters inserted into
the tool are accounted for in the TPC and thus in calculating the critical rate. It is difficult to know which
method is more accurate, but a comparison between the two is made in Figure 6.5 for the wells that
were studied with the TNO tool. This figure shows that the Coleman Criterion for most wells gives a
lower critical rate than the TPC curve does. This means that Coleman predicts liquid loading to happen
in a later stage. The alerter created by neural net may therefore be too optimistic. This means that
the liquid loading moment can be earlier than predicted by the alerter. The alerter is a good tool and
helps operators to predict the liquid loading moment in advance. Nonetheless the operator needs to
keep looking at field conditions and use the methods described in chapter 2 as well for final judgment.

Figure 6.5: The comparison between the critical rate calculated by the Coleman Criterion or determined by the TPC curve.
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Coleman Criterion was also compared to field data. The question rises if the critical rate calculated
by Coleman resembles that of the minimum rate at which the well was producing. From the field data
it is difficult to tell. As said before the decline curve is not a smooth curve and due to the fluctuation
it is challenging to determine the exact onset of liquid loading. Though to give a representation of the
accuracy of the Coleman rate the following graph is presented (Figure 6.6). From this graph it can be
concluded that the critical rates resemble each other and thus, having said that, the Coleman is an
accurate method to determine the critical rate for these wells.

Figure 6.6: The comparison between the critical rate calculated by the Coleman Criterion and the minimum rate at which a well
can produce from field data.

6.2.7. Research on Liquid Loading Prediction
The onset of liquid loading is observed when producing at a low rate by the indicators that were dis-
cussed in chapter 2. All of them can only detect liquid loading when liquid loading is already happening.
Calculating the minimum critical rate, however, is an accurate indicator that may provide DCA or the
forecast build by ANN to predict the liquid loading moment. A lot of research was conducted in order
to find the best method in calculating the critical rate. The most famous, and discusses previously,
are Turner [Turner et al., 1969] and Coleman [Coleman et al., 1991]. Following up on Turner many
scientist have improved his research. Nosseir et al. [Nosseir et al., 2000] expanded the Turner Cri-
terion for a entrained drop model to more than one flow regime in a well considering different flow
conditions. Turner assumed that the flow regimes were confined between 10ኾ < Re < 2 × 10 but
Nosseir states that due to the wide range of pressures, temperatures, and flow rates encountered in
gas wells, this is not necessarily confined. Therefore two analytical models were developed. One for
the transition, and the other one for highly turbulent flow regime. These equations will describe the
critical rate more accurately depending on the flow regime. Li [Li et al., 2002] adopts the view that
the liquids droplets entrained in gas wells tend to be flat shape and deduced a new formula for contin-
uous removal of liquids from gas wells. The results calculated from this formula are smaller than that
of Turner’s. However, Boyun Guo [Guo et al., 2005] states that Turner’s method underestimates the
minimum gas velocity for liquid removal and therefore determined the minimum kinetic energy of gas
that is required to lift liquids. Applying the minimum kinetic energy criterion to the four-phase (gas,
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oil, water, and solid particles) flow model resulted in a closed-form analytical equation for predicting
the minimum gas flow rate that is more accurate than Turner’s model. Veeken [Veeken et al., 2009]
also presents a Modified Turner expression, which includes an upward correction to best-fit a set of
offshore field data. This Modified Turner minimum stable rate better matches the minimum stable gas
rate derived from multiphase flow correlations.

Since critical gas rate equations only give a simple idea for the minimum rates, liquid loading can
be determined by nodal analysis. This will be more detailed since it considers the complete flow path
of fluids from reservoir to wellhead. The problem however lies in the fact that a lot of reservoir and
well data is need to calculate the TPC and IPR curve and therefore it was not possible to make use of
nodal analysis in this research.

All methods have their advantages and disadvantages. Coleman was chosen in this research to
calculate the critical flow rates as it provides a simple equation without the need of flow regimes and
actual rates that are difficult to determine. Moreover it is suitable for low pressure gas wells and shown
to be accurate to field data. Nonetheless more research should be conducted to examine the accuracy
of the other methods when predicting the onset of liquid loading.

6.2.8. Decline Curves
Decline curve analysis (DCA) is a graphical procedure used for analyzing declining production rates and
forecasting future performance of oil and gas wells. Oil and gas production rates decline as a function
of time. The loss of reservoir pressure or changing relative volumes of the produced fluids, are usually
the cause. Fitting a line through the performance history and assuming this same trend will continue
in future forms the basis of DCA concept. It is important to note here that in absence of stabilized
production trends the technique cannot be expected to give reliable results. A stabilized production
trend is however not often seen. Although the DCA is a good technique it is important that research is
done for other methods. The advantage of the liquid loading alerter made by ANN is the fact that it is
based on real field data. Thus including production instabilities. Next to this the forecast is made on a
time basis. An easy measure for the operator to know the moment of liquid loading and to get ready
to perform mitigation.

6.2.9. Alternative Purposes
NN is applicable in various data considered research. In the petroleum industry neural nets have
also shown to be very valuable. Research was done where ANN was trained successfully in order to
predicted fractures based on wireline log data [Kooijman, 2011]. Equilibrium ratios play a fundamental
role in the understanding of phase behavior of hydrocarbon mixtures. They are important in predicting
compositional changes under varying temperatures and pressures conditions in reservoirs, surface
separators, production and transportation facilities. [Habiballah et al., 1996] presents a new approach
for predicting equilibrium ratios using ANN. Next to this ANN was used to determine the optimum
number and location of the infill production new wells under development stage of the field life for a
oil field in Iraq [Ghazwan, 2012].

Taken this in account, and the many more research that is conducted, artificial intelligence is making
solid steps towards becoming more and more accepted in the oil and gas industry and provides for
new methods for identification, prediction and control.

6.2.10. Applicability
ANN has proven to be very useful for many application in the oil and gas industry. This research also
shows the potential that is offered by ANN to forecast gas rates. To train more complex networks
one has to start thinking of professional servers rather than consumer electronics due to memory
restrictions. In this research, training of one network already took several hours to days, let alone
using more neurons. Therefore the time limits the building of ANN. If hardware is available that can
decrease time and complexity the possibilities of ANN will increase even further. Having said this, it can
only be possible if data is available. The famous saying ’garbage in is garbage out’ is not just a saying.
The quality of the data will influence the result enormously. As artificial intelligence is better understood
today and its valuable benefit to research, it is important that companies, not only in the Netherlands
but around the world, gather data in order to use ANN or other methods of artificial intelligence within
the coming years.
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Future Outlook

7.1. Recent Projects
As EOFL techniques will become more and more needed due to well depletion in the near future, it
is important that this analysis is continued for new projects. Data keeping of recent projects, this
included wells where EoFL techniques are applied after 2010, is much better done than in the past.
This increases the ease and accuracy to quantify the gain of these projects. Big data will provide a lot
of insight in technical projects and will help further innovation. The operator plays a large role in this
and it is important that they monitor the information correctly. At the moment we are not there yet,
but this research as a first step in quantifying these techniques is a good start and research should
continue into this field. More wells can be evaluated, not only various operators, but also techniques,
other than velocity strings and foam. The more wells/data the more accurate results and then these
past operation will show a path for the future.

7.2. Clustering
Instead of forecasting a neural clustering network can be made. When clustering, the data is divided up
into different groups to which they fit best [MATLAB®, 2016c]. For example the tubing size is a cluster.
But even going a step back. From all the wells in the Netherlands a selection was made manually
of the wells that are liquid loading. The production rate of these wells were then used as input for
the neural network. From several features the clustering network can make a selection from all these
wells, which would save a lot of time, especially when using several hundred wells as input data. Then
when predicting liquid loading, wells that are or are not seasonal dependent can be clustered together.
Giving a more accurate prediction. As liquid loading is dependent on different parameters the liquid
loading moment may be found by clusters or the clusters are used as a pre-processing method after
which a forecast is made.

7.3. Forecasting with Pressure Data
As discussed in the previous section the pressure data is important to take into account. When correct
pressure measurements are found the daily pressures can be used. A method to predict a decrease
in the overall production of a well can be done by looking at the pressure build-ups. When a well
is producing at the maximum rate and closed in for whatever reason, the decreased FTHP during
production will increase until it reaches reservoir pressure again. If this is not the case the build-up
will not be as high, therefore they will be called mini build-ups. A neural network or another potential
network based on artificial intelligence can learn the pattern of the mini build-ups happening. Then an
indication of the moment of these mini build-ups can be predicted and an alerter can be made based
on this. The method does not only apply for liquid loading, as the reason for a smaller build-up is not
known, but it can be used for any particular problem in the well. For example salt precipitation. If the
prediction can be made in an early stage the operator has time to find out and fix the problem without
wasting a lot of time.
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7.4. Different Algorithms
Learning from big data is going to have a major effect on the efficiency of operations in the future.
Artificial neural networks may not be the optimal algorithm to forecast flow rates. Another one to
consider is genetic algorithm (GA). GA is a search algorithm based on the mechanics of natural selection.
The basic techniques of the GA are designed to simulate processes in natural systems necessary for
evolution by means of ”survival of the fittest”. Given a problem a GA generates a set of possible
solutions and evaluates each in order to decide which solutions are fit for reproduction. If a particular
solution is more fit then it will have more chances to generate new solutions. As such they represent
an intelligent exploitation of a random search used to solve optimization problems. While randomized,
GA is no simple random walk. They efficiently exploit historical information to speculate on new search
points with expected improved performance [Goldberg, 1989].

So instead modeling complex relationship between inputs and outputs data or to find patterns in
data like NN does, the GA finds a solution as a search technique. Both have their advantages and
disadvantages, ANN is much more efficient because a gradient is already available, while GA does not
have a gradient and no data is needed beforehand. The data appears during the training process.
Therefore GA can perform a directed search of the solution space, find the shortest route between two
points. By doing so it may find a more accurate solution.

Both have different approaches but they can also be used together. In doing so the flow rate can
first be trained on the ANN, as was done in this research, then GA can be used to try to find an even
better solution to predict liquid loading.
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Conclusions

Analyzing EoFL techniques

• The majority of the gas wells in the Netherlands are considered to be mature or in the tail-end
production stage, leading to a ceased production and stimulation of the well is required to keep
production from these wells going.

• Liquid loading is one of the major issues that decrease production and EoFL techniques are needed
to remove the liquid column from the well.

• From the wells studied in this research it can be concluded that the volume gain will be around
10 to 15 million Nmኽ with a velocity string installed or foam injection for a large amount of the
wells. Other wells produce even more than a 100 million Nmኽ.

• It can be concluded that the operator predicts more than the volume gain is after using a miti-
gation technique.

• The TNO tool is of large value when performing a quick scan in the volume gains of foam and
velocity strings.

• Velocity strings and foam show a high success rate for the wells studied. 11 out of 15 wells
showed a very high NPV, some even a NPV of 20 million euros or more. 4 wells had a negative
NPV, but only because production was ceased immediately due to well problems.

• From this research mitigation techniques are shown to be very valuable and more research should
be done to further investigate methods to keep production going in the Netherlands.

• More energy needs to be put in correctly organizing and gathering data. It would improve future
studies.

Neural networks

• With ANN it is possible to forecast monthly production data from historic field data.

• Pre-processing is the most important step in building a network. Famous saying: ’Garbage in
is garbage out’ is not just a saying, the patterns in data will be learned wrongly when data is
inaccurate and then the forecast will not be accurate.

• A filter needs to be used to for smoothing the production rate. The Lowess filter was chosen.

• The data was normalized to enhance fairness of training.

• The Levenberg-Marquardt was used as training function.

• The data was divided interleaved between a training, validation and testing set with the ratio
70%, 15% and 15% respectively.
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• The network was constructed with two layers, each containing 75 neurons. This network had the
lowest mean squared error. Each neuron has the tanh function as activation function.

• Training the network on logarithmic data and log return data did not increase performance.

• The network predicted the flow rates very accurately for most wells. It can be said that neural
networks works well when forecasting gas rates.

• Coleman Criterion is an accurate model to calculate the critical rate. The critical rate determined
by field data shows similar results to the Coleman rate. However Coleman rate has the tendency
to calculate lower minimum rates then the TPC curves does. The alerter could therefore be more
optimistic than it should.

• The network is very accurate when predicting liquid loading. It has difficulties with predicting the
precise month, but is always very close. Most of the time it predicts the exact moment of liquid
loading only one or two months in advance. This unfortunately is very short.

• Using daily data and tubing head pressures could increase training performance, and thus a more
accurate forecast. Next to using another method then time-series, namely clustering.
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Velocity String wells & Foam wells
Well Name Coleman rate (Nmኽ/month) Well Name Coleman Rate (Nmኽ/month)
1 4,760,496 21 664,230
2 3,925,250 22 483,301
3 4,191,284 23 728,807
4 4,191,284 24 769,068
5 1,932,581 25 769,068
6 1,478,359 26 728,807
7 1,478,359 27 3,542,755
8 2,063,562 28 3,228,844
9 1,977,107 29 3,228,844
10 1,294,560 30 3,228,844
11 1,294,560 31 1,294,560
12 1,383,052 32 1,419,610
13 1,334,659 33 1,478,359
14 1,498,069 34 1,589,709
15 1,259,027 35 1,589,709
16 1,064,215 36 1,932,581
17 862,220 37 1,589,709
18 2,562,743 38 1,589,709
19 769,068 39 1,478,359
20 707,889 40 664,230

Table 1: Table showing the critical rate calculated from the Coleman criterion for each well.
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Figure 1: The interface of the TNO deliquification toolbox, showing the input values [MATLAB®, 2016a].

Figure 2: The interface of the TNO deliquification toolbox, showing the results [MATLAB®, 2016a].
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Figure 3: The interface of the artificial neural networks toolbox [MATLAB®, 2016a].
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Cumulative production as input data
An operator thinks in cumulative gas production rather than the data of abandonment. Therefore,

as a second option, the cumulative production was taken into account as an input value next to monthly
rates and the tubing size. This training is similar to the training of the production rate and carried out
simultaneously. Thus the historical cumulative production is the input and the target is a forecast of the
cumulative production. As the liquid loading moment is expected to happen at high and more constant
slope of the cumulative curve it might add to a precise prediction of the onset of liquid loading.

Figure 4 shows the prediction of ANN for one of the wells. The monthly flow rate is shown at the top
and the cumulative production at the bottom. The error percentage in between the two graph shows
the difference between the actual data and the predicted data. Unfortunately this method does not
work. The forecast of the cumulative production is influenced by the monthly rates and shows negative
signs. This is not possible and the option was therefore disregarded. Research should be considered
on how to train the factors independently but still considering the cumulative production as an input.

Figure 4: The monthly gas rate and the cumulative production forecasted by ANN. The error percentages shows the difference
between actual filtered data and the predicted data.
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Figure 5: The sensitivity of the given parameters to the relative gain by an EOFL technique in comparison with no mitigation.

Figure 6: The sensitivity of the given parameters to the ultimate recovery.
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Figure 7: The sensitivity of the given parameters to the production years.
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Figure 8: The actual and the predicted flow rate by ANN for well ኻ. When the well falls below the Coleman Critical rate liquid
loading occurs. Each month a new prediction is made until the actual moment of liquid loading is found.
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Figure 9: The actual and the predicted flow rate by ANN for well ኻ. When the well falls below the Coleman Critical rate liquid
loading occurs. Each month a new prediction is made until the actual moment of liquid loading is found.
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Figure 10: The actual and the predicted flow rate by ANN for well ኻ. When the well falls below the Coleman Critical rate liquid
loading occurs. Each month a new prediction is made until the actual moment of liquid loading is found.
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Figure 11: The actual and the predicted flow rate by ANN for well ኻ. When the well falls below the Coleman Critical rate liquid
loading occurs. Each month a new prediction is made until the actual moment of liquid loading is found.
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Figure 12: The actual and the predicted flow rate by ANN for well ኻ. When the well falls below the Coleman Critical rate liquid
loading occurs. This happened in month , which was predicted accurately in ኼ months in advance.
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Figure 13: The actual and the predicted flow rate by ANN trained on the logarithmic data. The prediction did not improve.
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Figure 14: The actual and the predicted flow rate by ANN trained on the logarithmic data. The prediction did not improve.
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Figure 15: The regression plot for the log return network.
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Figure 16: The regression plot for the log return network.
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1 close a l l ;
2 %% Options
3 % Data process ing
4 PFM_READ_DATA = 1;
5 PFM_PRE_FILTER = 1;
6 PFM_FILTER_DATA = 1; % Enable MATLAB data f i l t e r
7 PFM_LOGRETURN_DATA = 0; % Enable log−re tu rn data
8 PFM_LOG_DATA = 0; % Enable data i n log sca l e
9 PFM_NORM_DATA = 1; % Enable normal ize data
10 PFM_NORM_SCALE_ONLY = 1; % Don ’ t assume data i s accord ing to normal

d i s t , on ly s ca l e data to domain [1 0]
11 PFM_TRAIN_NETWORK = 0; % Enable t r a i n i n g the network
12 PFM_FORECAST = 0; % Enable f o r c a s t i n g the network
13 PFM_LIQUID_LOADING = 1; % Enable f i n d i ng l i q u i d −l oad ing po in t f o r a l l

we l l s
14 % P l o t t i n g
15 PFM_FILTER_SHOW = 0; % Show the f i l t e r r e s u l t s f o r a l l we l l s
16 PFM_DIFF_SHOW = 0; % Show the log−re tu rns f o r a l l we l l s
17 PFM_LOG_SHOW = 0; % Show the logra thmic r e s u l t s f o r a l l we l l s
18 PFM_NORM_SHOW = 0; % Show the normal ized data f o r a l l we l l s
19 PFM_ACF_SHOW = 0; % Show the au t o co r r e l a t i o n func t i on r e s u l t s
20 PFM_RESPONSE_SHOW = 0; % Show the open−loop response
21 PFM_FORECAST_SHOW = 0; % Show the closed−loop f o r c a s t
22 %% Read data from CSV f i l e
23 i f PFM_READ_DATA
24 t i c ;
25 % Sta r t the t imer
26 f i l ename = ’ . . /

Putten_productionrate_tubingsize_new_zondernaLLmoment_zondercumprod
. csv ’ ;

27 f i d = fopen ( f i lename ) ;
28 % Open f i l e ’ f i lename ’
29 t l i n e = fgetl ( f i d ) ;
30 % Read the f i r s t l i n e from f i l e ( conta ins we l l names)
31 c o l _ l i n e = fgetl ( f i d ) ;
32 fclose ( f i d ) ;
33 % Close the f i l e
34 wellNames = s t r s p l i t ( t l i n e , ’ ; ’ ) ;
35 % Sp l i t the we l l names seperated by a ’ ; ’
36 colNames = s t r s p l i t ( c o l _ l i n e , ’ ; ’ ) ;
37 data = dlmread ( f i lename , ’ ; ’ ,2 ,0) ;
38 % Read ’ f i lename ’ from l i n e 2 , column 0 onwards
39
40 f c i d = fopen ( ’ . . / C r i t i c a l _ r a t e . csv ’ ) ;
41 % Open f i l e ’ f i lename ’
42 t c l i n e = fgetl ( f c i d ) ;
43 % Read the f i r s t l i n e from f i l e ( conta ins we l l names)
44 fclose ( f c i d ) ;
45 cr i tWel lNames = s t r s p l i t ( t c l i n e , ’ ; ’ ) ;
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46 c r i t i c a l _ d a t a = dlmread ( ’ . . / C r i t i c a l _ r a t e . csv ’ , ’ ; ’ ,1 ,0) ;
47
48 co l sPe rWe l l = 2;
49 % Number of data−columns per we l l
50 nrOfTargets = 1;
51 % Number of t a rge t s f o r the network
52 % Ca l cu l a t e data set va lues
53 nrTimesteps = size ( data , 1 ) ;
54 % The maximum number of t imesteps i n the data
55 nrWel l s = size ( data , 2 ) / co l sPe rWe l l ;
56 % Ca l cu l a t e number of we l l s
57 fpr int f ( ’ Read data from CSV f i l e \ t \ t \ t took %0.2 f s \n ’ , toc ) ;
58 % Pr i n t what was done and how long i t took
59 % Set the wel lEnds
60 wel lEnd = zeros ( nrWel ls , 1) ;
61 % This empty matr ix w i l l hold the nr of t imesteps f o r each w e l l l
62 c r i t i c a l _ r a t e s = zeros ( nrWel ls , 1) ;
63 for p=1: nrWel l s
64 % For a l l the we l l s
65 for pc=1: length ( cr i tWel lNames )
66 i f strcmp ( cr i tWel lNames {pc } , wellNames{p * co l sPe rWe l l })
67 % I f wellname i s the same then we l l p == we l l pc
68 c r i t i c a l _ r a t e s (p ) = squeeze ( c r i t i c a l _ d a t a (1 , pc ) ) ;
69 % Store the c r i t i c a l ra te of we l l pc i n c r i t i c a l _ r a t e s f o r

we l l p
70 break ;
71 % We saved the c r i t i c a l _ r a t e , l e t ’ s break the f o r loop
72 end
73 end
74 wel lEnd (p) = length ( data (1 :end−find ( f l i p ( data ( : , p * co l sPe rWe l l ) )

> 0 ,1 , ’ f i r s t ’ )+1, p * co l sPe rWe l l ) ) ;
75 % Find the l a s t element i n data which i s not 0
76 end
77 end
78 %% Pre− f i l t e r the data ( remove 0s )
79 i f PFM_PRE_FILTER
80 t i c ;
81 for p=1: nrWel l s
82 I = find ( data (1 : wel lEnd (p ) , p * co l sPe rWe l l ) == 0) ;
83 i = 1;
84 while ~isempty ( I )
85 index = I ( i ) ;
86 i f index == 1
87 % Care fu l there i s no prev ious data
88 i f length ( I ) == 1 | | I ( i +1) ~= index+1
89 data ( index , p * co l sPe rWe l l ) = data ( index+1, p *

co l sPe rWe l l ) ;
90 else
91 curpos = index ;
92 c u r i = i ;
93 while c u r i < length ( I ) && curpos + 1 == I ( c u r i +1)
94 curpos = curpos+1;
95 c u r i = c u r i +1;
96 end
97 data ( index : curpos , p * co l sPe rWe l l ) = repmat ( data (

curpos+1, p * co l sPe rWe l l ) , length ( index : curpos ) ,1) ;
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98 I ( i : c u r i ) = [ ] ;
99 end
100 else i f index == length ( data (1 : wel lEnd (p) , p * co l sPe rWe l l ) ) ;
101 % Care fu l there i s no lead ing data
102 % Leading zeros are cut o f f before t h i s po int , l a s t zero
103 % w i l l never be at index length ( data )
104 else
105 curpos = index ;
106 c u r i = i ;
107 while c u r i < length ( I ) && curpos+1 == I ( c u r i +1)
108 curpos = curpos + 1;
109 c u r i = cu r i + 1;
110 end
111 data ( index : curpos , p * co l sPe rWe l l ) = repmat ( data ( index−1,

p * co l sPe rWe l l ) , 1 , length ( index : curpos ) ) + (1 : length (
index : curpos ) ) .* ( data ( curpos+1, p * co l sPe rWe l l ) −
data ( index−1, p * co l sPe rWe l l ) ) / length ( index : curpos ) ;

112 I ( i : c u r i ) = [ ] ;
113 end
114 end
115 end
116 fpr int f ( ’ Pre− f i l t e r e d data \ t \ t \ t \ t took %0.2 f s \n ’ , toc ) ;
117 end
118 %% F i l t e r the data ( see re fe rences below )
119 for p=1: nrWel l s
120 data ( wel lEnd (p)+1:wel lEnd (p)+ 20 , p * co l sPe rWe l l ) = 1;
121 data ( wel lEnd (p)+1:wel lEnd (p)+ 20 , p * co l sPerWel l −1) = data ( wel lEnd (p) ,

co l sPe rWe l l * p − 1) ;
122 end
123 wel lEnd = wel lEnd + 20;
124 nrTimesteps = nrTimesteps + 20;
125
126 i f PFM_FILTER_DATA
127 t i c ;
128 % Sta r t the t imer
129 f i l t e r D a t a = zeros ( size ( data ) ) ;
130 % Empty matr ix to hold a l l the f i l t e r e d data
131 windowSize = 7;
132 % F i l t e r window s i z e
133 b = (1/ windowSize ) * ones ( windowSize , 1 ) ;
134 % Equal f i l t e r
135 a = 1;
136 % F i l t e r parameter a
137 for p=1: nrWel l s
138 % For a l l we l l s
139 for c=1:( co l sPerWel l −1)
140 f i l t e r D a t a (1 : wel lEnd (p ) , p * co l sPe rWe l l −c ) = data (1 :

wel lEnd (p ) , p * co l sPe rWe l l − c ) ;
141 % Also copy over the other columns
142 end
143 f i l t e r D a t a (1 : wel lEnd (p ) , p * co l sPe rWe l l ) = smooth (1 : wel lEnd

(p ) , data (1 : wel lEnd (p) , p * co l sPe rWe l l ) , windowSize , ’ lowess ’ )
; % Lowess f i l t e r

144 end
145 f i l t e r D a t a ( 1 : ( windowSize−1) , : ) = [ ] ;
146 % Remove the f i r s t ’ windowsize −1 ’ samples from the data
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147 wel lEnd = wel lEnd − ( windowSize − 1) ;
148 % The wel lEnds w i l l a l so have to be reduces by ’ windowsize−1 ’
149 nrTimesteps = nrTimesteps − ( windowSize − 1) ;
150 % So w i l l the t imesteps
151 fpr int f ( ’ F i l t e r e d the data \ t \ t \ t \ t took %0.2 f s \n ’ , toc ) ;
152 % Pr i n t what was done and how long i t took
153 else
154 windowSize = 1;
155 % Windowsize i s used f u r t he r on in the s c r i p t , so set i t to 1
156 f i l t e r D a t a = data ;
157 % Bypass the f i l t e r
158 end
159 I = find ( f i l t e r D a t a < 0) ;
160 i f ~isempty ( I )
161 fpr int f ( ’ \nWARNING: F i l t e r e d data conta ins negat ive elements . \ n \n ’ ) ;
162 f i l t e r D a t a ( f i l t e r D a t a <0) = 0;
163 % Remove a l l zeros from data
164 end
165 %% D i f f e r e n t i a t e the data
166 i f PFM_LOGRETURN_DATA
167 t i c ;
168 % Sta r t the t imer
169 wel lEnd = wel lEnd − 1;
170 % The re tu rns w i l l have 1 sample l e s s
171 nrTimesteps = nrTimesteps − 1;
172 % The re tu rns w i l l have 1 sample l e s s
173 d i f fDa t a = zeros ( size ( f i l t e r D a t a , 1 )−1,size ( f i l t e r D a t a , 2 ) ) ;
174 % Create a matr ix to hold the d i f f e r e n t i a l data
175 for p=1: nrWel l s
176 % For a l l the we l l s
177 % Ca l cu l a t e the log−re tu rn
178 d i f fDa t a (1 : wel lEnd (p) , p * co l sPe rWe l l ) = log (1 + max(−0.999 , d i f f (

f i l t e r D a t a (1 : wel lEnd (p)+1, p * co l sPe rWe l l ) ) . /max(1 , f i l t e r D a t a
(1 : wel lEnd (p) , p * co l sPe rWe l l ) ) ) ) ;

179 for c=1:( co l sPerWel l −1)
180 d i f fDa t a (1 : wel lEnd (p) , p * co l sPe rWe l l −c ) = f i l t e r D a t a (1 :

wel lEnd (p) , p * co l sPe rWe l l − c ) ;
181 % Also copy over the other columns
182 end
183 end
184 fpr int f ( ’ Ca l cu l a ted log−re tu rns \ t \ t \ t took %0.2 f s \n ’ , toc ) ;
185 % Pr i n t what was done and how long i t took
186 else
187 d i f fDa t a = f i l t e r D a t a ;
188 % Bypassing log−re tu rns
189 end
190 %% Logar i thmic sca l e
191 i f PFM_LOG_DATA
192 t i c ;
193 % Sta r t the t imer
194 logData = zeros ( size ( d i f fDa t a ) ) ;
195 % Create empty matr ix f o r the l oga r i t hm i c data
196 for p=1: nrWel l s
197 % For a l l we l l
198 for c=1:( co l sPerWel l −1)
199 logData (1 : wel lEnd (p ) , p * co l sPe rWe l l −c ) = d i f fDa t a (1 :
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wel lEnd (p) , p * co l sPe rWe l l − c ) ;
200 % Also copy over the other columns
201 end
202 logData (1 : wel lEnd (p) , p * co l sPe rWe l l ) = log10 ( d i f fDa t a (1 :

wel lEnd (p ) , p * co l sPe rWe l l ) ) ;
203 % Loga r i t hm i c a l l y s ca l e the data
204 end
205 fpr int f ( ’ Scaled data l o g a r i t hm i c a l l y \ t \ t took %0.2 f s \n ’ , toc ) ;
206 % Pr i n t what was done and how long i t took
207 else
208 logData = d i f fDa t a ;
209 % Bypass the l oga r i t hm i c sca l e
210 end
211 %% Normal ize the data
212 i f PFM_NORM_DATA
213 t i c ;
214 % Sta r t the t imer
215 normData = zeros ( size ( data ) ) ;
216 % Create empty matr ix to s to re the normal ized data
217 wellMean = zeros (1 , nrWel l s ) ;
218 % Create empty matr ix to s to re the means per we l l
219 wel lS td = zeros (1 , nrWel l s ) ;
220 % Create empty matr ix to s to re the std per we l l
221 for p=1: nrWel l s
222 % For a l l we l l s
223 tmpTarget = logData (1 : wel lEnd (p ) , p * co l sPe rWe l l ) ;
224 % Store the product ion data i n a temporary matr ix f o r easy access
225 i f PFM_NORM_SCALE_ONLY
226 wellMean (p) = min( tmpTarget ) ;
227 % Store the product ion mean fo r t h i s we l l
228 wel lS td (p ) = max( tmpTarget ) − min( tmpTarget ) ;
229 % Store the product ion std f o r t h i s we l l
230 else
231 wellMean (p) = mean( tmpTarget ) ;
232 % Store the product ion mean fo r t h i s we l l
233 wel lS td (p ) = std ( tmpTarget ) ;
234 % Store the product ion std f o r t h i s we l l
235 end
236 for c=1:( co l sPerWel l −1)
237 i f strcmp ( ’Cum. Product ion ’ , colNames{p * co l sPe rWe l l −c })
238 normData (1 : wel lEnd (p) , p * co l sPe rWe l l −c ) = logData (1 :

wel lEnd (p) , p * co l sPe rWe l l − c ) . / logData ( wel lEnd (p) ,
p * co l sPe rWe l l − c ) ;

239 % Also copy over the other columns
240 else
241 normData (1 : wel lEnd (p) , p * co l sPe rWe l l −c ) = logData (1 :

wel lEnd (p) , p * co l sPe rWe l l − c ) ;
242 % Also copy over the other columns
243 end
244 end
245 normData (1 : wel lEnd (p) , p * co l sPe rWe l l ) = ( tmpTarget −

wellMean (p) ) ;
246 % Normal ize the product ion data based on mean and std
247 end
248 max_wellStd = max( we l lS td ) ;
249
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250 for p=1: nrWel l s
251 wel lS td (p ) = log10 ( max_wellStd ) / log10 ( we l lS td (p ) )*we l lS td (p ) ;%

/10;
252 normData (1 : wel lEnd (p ) , p * co l sPe rWe l l ) = normData (1 : wel lEnd (p

) , p * co l sPe rWe l l ) / we l lS td (p ) ;
253 end
254 fpr int f ( ’ Normal ized data \ t \ t \ t \ t \ t took %0.2 f s \n ’ , toc ) ;
255 % Pr i n t what was done and how long i t took
256 else
257 normData = logData ;
258 % Bypass data no rma l i za t i on
259 end
260 %% P lo t data
261 i f PFM_FILTER_SHOW
262 for p=1: nrWel l s
263 f = figure ( ) ;
264 hold a l l ;
265 % Plo t the raw ta rge t data
266 plot ( 1 : ( wel lEnd (p )+(windowSize−1) ) , data ( 1 : ( wel lEnd (p)+(windowSize

−1) ) , p * co l sPe rWe l l ) , ’ x ’ ) ;
267 % Plo t the f i l t e r e d ta rge t data
268 plot ( windowSize : ( wel lEnd (p)+(windowSize−1) ) , f i l t e r D a t a (1 : wel lEnd (

p) , p * co l sPe rWe l l ) , ’− ’ ) ;
269 hold o f f ;
270 t i t l e ( wellNames{p * co l sPe rWe l l }) ;
271 xlabel ( ’ Month ’ ) ;
272 ylabel ( ’ P roduct ion Rate [Nm^3/month ] ’ ) ;
273 legend ( ’Raw data ’ , ’ Smoothed data ’ ) ;
274 end
275 end
276 i f PFM_DIFF_SHOW
277 for p=1: nrWel l s
278 f = figure ( ) ;
279 hold a l l ;
280 plot (1 : wel lEnd (p) , d i f fDa t a (1 : wel lEnd (p ) , p * co l sPe rWe l l ) ) ;
281 hold o f f ;
282 t i t l e ( wellNames{p * co l sPe rWe l l }) ;
283 xlabel ( ’ Month ’ ) ;
284 ylabel ( ’ P roduct ion Rate [Nm^3/month ] ’ ) ;
285 end
286 end
287 i f PFM_LOG_SHOW
288 for p=1: nrWel l s
289 % Plo t the log ta rge t data
290 f = figure ( ) ;
291 hold a l l ;
292 plot (1 : wel lEnd (p) , logData (1 : wel lEnd (p) , p * co l sPe rWe l l ) , ’− ’ ) ;
293 hold o f f ;
294 t i t l e ( wellNames{p * co l sPe rWe l l }) ;
295 xlabel ( ’ Month ’ ) ;
296 ylabel ( ’ P roduct ion Rate [Nm^3/month ] ’ ) ;
297 end
298 end
299 i f PFM_NORM_SHOW
300 for p=1: nrWel l s
301 % Plo t the norm ta rge t data
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302 f = figure ( ) ;
303 hold a l l ;
304 plot (1 : wel lEnd (p) , normData (1 : wel lEnd (p) , p * co l sPe rWe l l ) , ’− ’ ) ;
305 hold o f f ;
306 t i t l e ( wellNames{p * co l sPe rWe l l }) ;
307 xlabel ( ’ Month ’ ) ;
308 ylabel ( ’ P roduct ion Rate [Nm^3/month ] ’ ) ;
309 end
310 end
311 %% P lo t auto−c o r r e l a t i o n of product ion data
312 i f PFM_ACF_SHOW
313 maxLag = 72;
314 % Maximum lag to t e s t
315 for p=1: nrWel l s
316 % For a l l we l l s
317 figure ( ) ;
318 % New f i gu r e
319 ac f ( normData (1 : wel lEnd (p) , p * co l sPe rWe l l ) , maxLag) ;
320 % Show the auto−c o r r e l a t i o n
321 end
322 end
323 %% Format the data accord ing to NN
324 i f PFM_TRAIN_NETWORK
325 t i c ;
326 % Pre−def ine the input and ta rge t c e l l s
327 input_seq = c e l l ( co l sPe rWe l l − nrOfTargets , nrTimesteps ) ;
328 target_seq = c e l l (1 , nrTimesteps ) ;
329 % For a l l t imes tep ts i n the data
330 for t ime=1:nrTimesteps
331 tmpInput = NaN * zeros ( co l sPe rWe l l − nrOfTargets , nrWel l s ) ;
332 tmpTarget = NaN * zeros ( nrOfTargets , nrWel l s ) ;
333 % For a l l we l l s i n the data
334 for p=1: nrWel l s
335 % For a l l Elements per we l l ( except f o r the ta rge t which i s

the l a s t column )
336 i f t ime <= wel lEnd (p)
337 for e=1:( co l sPe rWe l l − nrOfTargets )
338 % Store t h i s Element f o r t h i s t imestep and we l l
339 tmpInput (e , p ) = normData ( time , (p−1) * co l sPe rWe l l +

e ) ;
340 end
341 % Store the Target f o r t h i s t imestep and we l l
342 for e=1:nrOfTargets
343 tmpTarget (e , p ) = normData ( time , (p−1) * co l sPe rWe l l +

( co l sPerWel l−nrOfTargets ) + e ) ;
344 end
345 end
346 end
347 % Store i n o v e r a l l s t r u c t u r e
348 input{ time} = tmpInput ;
349 t a rge t { t ime} = tmpTarget ;
350 clear tmpInput tmpTarget ;
351 end
352 fpr int f ( ’ Prepared input data and ta rge t s \ t took %0.2 f s \n ’ , toc ) ;
353 end
354 %% Sta r t NN
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355 i f PFM_TRAIN_NETWORK
356 t i c ;
357 X = input ;
358 T = ta rge t ;
359 t r a i nFcn = ’ t r a i n lm ’ ; % Scaled conjugate grad ien t backpropagat ion .
360 % Create a Non l inear Autoregress i ve Network with Ex te rna l Input
361 pastSteps = 36;
362 % Number of past months used f o r p r ed i c t i o n
363 i f ~isempty ( co l sPe rWe l l * find ( wel lEnd < pastSteps ) )
364 fpr int f ( ’ \ nWarning , seve ra l we l l s dont meet the requ i red %i past s teps

: \ n ’ , pastSteps ) ;
365 wrongWells = find ( wel lEnd < pastSteps ) ;
366 for i = 1: length ( wrongWells )
367 fpr intf ( ’%s only %i months \n ’ , wellNames{ co l sPe rWe l l * wrongWells (

i ) } , wel lEnd ( wrongWells ( i ) ) )
368 end
369 fpr int f ( ’ \n ’ ) ;
370 end
371 i nputDe lays = 1: pastSteps ;
372 feedbackDelays = 1: pastSteps ;
373 hiddenLayerS ize = [75 75];
374 % Number of neurons used in Network
375 net = narxnet ( inputDelays , feedbackDelays , h iddenLayerS ize , ’

open ’ , t r a i nFcn ) ;
376 net . l a ye r s {1}. t r ans fe rFcn = ’ t ans i g ’ ;
377 net . l a ye r s {2}. t r ans fe rFcn = ’ t ans i g ’ ;
378
379 net . i npu t s {1}. processFcns = { ’ removeconstantrows ’ } ;
380 net . i npu t s {2}. processFcns = { ’ removeconstantrows ’ } ;
381
382 [ x , x i , a i , t ] = preparets ( net , X , { } , T) ;
383 net . d i v ideFcn = ’ d i v i d e i n t ’ ;
384 % Div ide data i n t e r l e aved
385 net . divideMode = ’ t ime ’ ;
386 % Div ide up every time
387
388 net . div ideParam . t r a i nRa t i o = 70/100;
389 net . div ideParam . va lRa t i o = 15/100;
390 net . div ideParam . t e s tRa t i o = 15/100;
391
392 net . t ra inParam . max_fa i l = 25;
393 net . t ra inParam . epochs = 1000;
394
395 % Choose a Performance Funct ion
396 net . performFcn = ’mse ’ ;
397 % Mean Squared E r ro r
398
399 % Choose P l o t Funct ions
400 net . p lo tFcns = { ’ p lo tper form ’ , ’ p l o t t r a i n s t a t e ’ , ’ p l o t e r r h i s t ’ , . . .
401 ’ p l o t r eg r e s s i on ’ , ’ p lo t response ’ , ’ p l o t e r r c o r r ’ , ’ p l o t i n e r r c o r r ’ } ;
402
403 % Tra in the Network
404 [ net , t r ] = t r a i n ( net , x , t , x i , a i ) ;
405
406 % Test the Networkplotp
407 y = net ( x , x i , a i ) ;
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408 e = gsubt rac t ( t , y ) ;
409 performance = perform ( net , t , y ) ;
410
411 % Reca l cu l a te Tra in ing , Va l i d a t i o n and Test Performance
412 t r a i nTa rge t s = gmu l t i p l y ( t , t r . t ra inMask ) ;
413 va lTarge ts = gmu l t i p l y ( t , t r . valMask ) ;
414 t e s tTa rge t s = gmu l t i p l y ( t , t r . testMask ) ;
415 t ra inPer formance = perform ( net , t r a inTa rge t s , y ) ;
416 valPerformance = perform ( net , va lTargets , y ) ;
417 testPer formance = perform ( net , tes tTargets , y ) ;
418
419 fpr int f ( ’ \ nPerformance : %0.5e \n ’ , performance ) ;
420 fpr int f ( ’ T ra in performance : %0.5e \n ’ , t ra inPer formance ) ;
421 fpr int f ( ’ V a l i d a t i o n performance : %0.5e \n ’ , va lPerformance ) ;
422 fpr int f ( ’ Test performance : %0.5e \n\n ’ , testPer formance ) ;
423
424 % P lo t s
425 figure , p lo tper form ( t r )
426 i f PFM_RESPONSE_SHOW
427 for p=1: nrWel l s
428 figure , p lo t response ( t , y , ’ sampleIndex ’ ,p ) ;
429 t i t l e ( wellNames{p * co l sPe rWe l l }) ;
430 end
431 end
432 fpr int f ( ’ F in i shed t r a i n i n g neura l network took %0.2 f s \n ’ , toc ) ;
433 end
434 %% Mul t i−step P r ed i c t i o n
435 i f PFM_FORECAST
436 t i c ;
437 knownSamples = pastSteps ;
438 % Change i f you want the f i r s t par t to p r ed i c t with open−loop
439 f u t u r eP r ed i c t i o n s = 12;
440 % Number of p red i c ted months
441
442 i f knownSamples + f u t u r eP r ed i c t i o n s > nrTimesteps
443 disp ( ’WARNING: more p r ed i c t i o n s requested than data a v a i l a b l e ’ ) ;
444 f u t u r e P r e c i c t i o n s = nrTimesteps − knownSamples ;
445 % Maximum number of p r ed i c t i o n pos s i b l e from data
446 end
447
448 star tMonth = 40;
449 % Month in which p r ed i c t i o n s t a r t s
450 knownOutputTimesteps = ( star tMonth − pastSteps + 1) : ( knownSamples +

star tMonth − pastSteps ) ;
451 pred ic tOutputT imesteps = ( star tMonth − pastSteps + 1) : ( knownSamples +

startMonth − pastSteps ) + f u t u r eP r ed i c t i o n s ;
452 X1 = X( knownOutputTimesteps ) ;
453 T1 = T( knownOutputTimesteps ) ;
454 [ x1 , x io , aio , t1c ] = preparets ( net , X1 , { } , T1) ;
455 [ y1 , xfo , afo ] = net ( x1 , x io , a io ) ;
456
457 X2 = X( pred ic tOutputT imesteps ) ;
458 T2 = T( pred ic tOutputT imesteps ) ;
459 [ netc , x i c , a i c ] = c lose loop ( net , xfo , afo ) ;
460 [ x2c , x2 ic , a2ic , t2c ] = preparets ( netc , X2 , { } , T2) ;
461 [ y2 , xfc , a fc ] = netc ( x2c , x2 ic , a2 i c ) ;
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462 mult iStepPerformance = perform ( net , t2c , y2 ) ;
463 fpr int f ( ’ \ nMul t i−step performance : %0.5 f \n \n ’ , mult iStepPerformance ) ;
464 %% Reformat output data
465 we l l P r e d i c t i o n = zeros ( length ( y2 ) , nrWel ls , nrOfTargets ) ;
466 t r ue_p red i c t i on = zeros ( length ( y2 ) , nrWel ls , nrOfTargets ) ;
467 for p=1: nrWel l s
468 for t i =1: length ( y2 )
469 for t a r =1: nrOfTargets
470 we l l P r e d i c t i o n ( t i , p , t a r ) = y2{ t i }( tar , p ) ;
471 end
472 end
473 i f PFM_LOGRETURN_DATA
474 i f PFM_NORM_DATA
475 t r ue_p red i c t i on ( : , p , 1 ) = data (1 ,p * co l sPe rWe l l ) * cumprod

(exp( we l l P r e d i c t i o n ( : , p , 1 ) * we l lS td (p ) + wellMean (p) )
− 1) ;

476 else
477 t r ue_p red i c t i on ( : , p , 1 ) = data (1 ,p * co l sPe rWe l l ) * cumprod

(exp( we l l P r e d i c t i o n ( : , p , 1 ) ) − 1) ;
478 end
479 else
480 i f PFM_NORM_DATA && PFM_LOG_DATA
481 t r ue_p red i c t i on ( : , p , 1 ) = 10.^( we l l P r e d i c t i o n ( : , p , 1 ) *

we l lS td (p ) + wellMean (p) ) ;
482 else
483 i f PFM_NORM_DATA
484 t r ue_p red i c t i on ( : , p , 1 ) = we l l P r e d i c t i o n ( : , p , 1 ) *

we l lS td (p ) + wellMean (p) ;
485 else
486 i f PFM_LOG_DATA
487 t r ue_p red i c t i on ( : , p , 1 ) = 10.^( we l l P r e d i c t i o n ( : , p

, 1 ) ) ;
488 else
489 t r ue_p red i c t i on ( : , p , 1 ) = we l l P r e d i c t i o n ( : , p , 1 ) ;
490 end
491 end
492 end
493 end
494 end
495 fpr int f ( ’ F i n i shed f o r c a s t i n g data \ t took %0.2 f s \n ’ , toc ) ;
496 end
497 %% P lo t f o r e ca s t
498 i f PFM_FORECAST_SHOW
499 error = zeros ( size ( we l l P r ed i c t i on , 1) , nrWel ls , nrOfTargets )

;
500 r e l _ e r r o r = zeros ( size ( we l l P r ed i c t i on , 1) , nrWel ls , nrOfTargets )

;
501 for p=1: nrWel l s
502 figure ( ) ;
503 subplot (3 ,1 , [1 2]) ;
504 hold a l l ;
505 % Plo t the raw ta rge t data
506 plot ( pred ic tOutputT imesteps (1 :end−f u t u r eP r ed i c t i o n s ) , data (

pred ic tOutputT imesteps (1 :end−f u t u r eP r ed i c t i o n s ) + (windowSize
−1) , p * co l sPe rWe l l ) , ’ bx ’ ) ;

507 plot ( pred ic tOutputT imesteps (end−f u t u r eP r ed i c t i o n s :end) , data (
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pred ic tOutputT imesteps (end−f u t u r eP r ed i c t i o n s :end) + ( windowSize
−1) , p * co l sPe rWe l l ) , ’ bx ’ ) ;

508 % Plo t the f i l t e r e d ta rge t data
509 curMonthData = data ( star tMonth + windowSize − 1 , p * co l sPe rWe l l ) ;
510 i f PFM_FILTER_DATA
511 plot ( pred ic tOutputT imesteps (1 :end−f u t u r eP r ed i c t i o n s ) ,

f i l t e r D a t a ( pred ic tOutputT imesteps (1 :end−f u t u r eP r ed i c t i o n s ) ,
p * co l sPe rWe l l ) , ’ r− ’ ) ;

512 plot ( pred ic tOutputT imesteps (end−f u t u r eP r ed i c t i o n s :end) ,
f i l t e r D a t a ( pred ic tOutputT imesteps (end−f u t u r eP r ed i c t i o n s :end
) , p * co l sPe rWe l l ) , ’ r−− ’ ) ;

513 curMonthData = f i l t e r D a t a ( startMonth , p * co l sPe rWe l l ) ;
514 end
515 % Plo t the pred i c ted output data
516 plot ( pred ic tOutputT imesteps ( (end − size ( t rue_p red i c t i on , 1 ) ) :end) ,

[ curMonthData ; t r ue_p red i c t i on ( : , p , 1 ) ] , ’ g.− ’ ) ;
517 t i t l e ( wellNames{p * co l sPe rWe l l }) ;
518 xlabel ( ’ Month ’ ) ;
519 ylabel ( ’ P roduct ion [Nm^3/month ] ’ ) ;
520 i f PFM_FILTER_DATA
521 legend ( ’Raw h i s t o r i c data ’ , ’ Ac tua l raw data ’ , ’ F i l t e r e d

h i s t o r i c data ’ , ’ Ac tua l f i l t e r e d data ’ , ’ p red i c ted data ’ , ’
Locat ion ’ , ’ southwest ’ ) ;

522 else
523 legend ( ’Raw h i s t o r i c data ’ , ’ Ac tua l raw data ’ , ’ p red i c ted data ’ ,

’ Locat ion ’ , ’ southwest ’ ) ;
524 end
525 subplot (3 ,1 ,3) ;
526 hold a l l ;
527 error ( : , p , 1 ) = t r ue_p red i c t i on ( : , p , 1 ) − f i l t e r D a t a (

pred ic tOutputT imesteps (end−f u t u r eP r ed i c t i o n s +1:end) , p *
co l sPe rWe l l ) ;

528 r e l _ e r r o r ( : , p , 1 ) = abs ( error ( : , p , 1 ) ) . / f i l t e r D a t a (
pred ic tOutputT imesteps (end−f u t u r eP r ed i c t i o n s +1:end) , p *
co l sPe rWe l l ) ;

529 bar ( pred ic tOutputT imesteps (end−f u t u r eP r ed i c t i o n s +1:end) , r e l _ e r r o r
( : , p , 1 ) .*100) ;

530 xlabel ( ’ Month ’ ) ;
531 ylabel ( ’ E r ro r [% product ion ] ’ ) ;
532 t i t l e ( ’ Forecas t e r r o r ’ ) ;
533 end
534 end
535 %% Regress ion p l o t s
536 p l o t r eg r e s s i on ( t ( t r . t r a i n I nd ) , y ( t r . t r a i n I nd ) , ’ T ra in ’ , t ( t r . va l Ind ) , y ( t r .

va l Ind ) , ’ V a l i d a t i o n ’ , t ( t r . t e s t Ind ) , y ( t r . t e s t Ind ) , ’ Tes t ing ’ , t , y , ’ A l l ’ ) ;
537 %% P lo t
538 figure ( ) ;
539 hold a l l ;
540 H1 = plot ( [ t r . t r a i n I nd ; t r . t r a i n I nd ] , [ zeros ( size ( data ( t r . t r a in Ind ,2 ) ) ) ’ ;

data ( t r . t r a in Ind ,2 ) ’ ] , ’ b ’ , ’ L ineWidth ’ ,2) ;
541 H2 = plot ( [ t r . va l Ind ; t r . va l Ind ] , [ zeros ( size ( data ( t r . va lInd ,2 ) ) ) ’ ; data ( t r

. va lInd ,2 ) ’ ] , ’ g ’ , ’ L ineWidth ’ ,2) ;
542 H3 = plot ( [ t r . t e s t Ind ; t r . t e s t Ind ] , [ zeros ( size ( data ( t r . tes t Ind ,2 ) ) ) ’ ; data

( t r . tes t Ind ,2 ) ’ ] , ’ r ’ , ’ L ineWidth ’ ,2) ;
543 set (gca , ’ XLim ’ , [0 wel lEnd (1) ] ) ;
544 t i t l e ( ’ Data d i v i s i o n between Tra in ing , Va l i d a t i o n and Test ing se t s ’ ) ;
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545 xlabel ( ’ Month ’ ) ;
546 ylabel ( ’ P roduct ion ra te [Nm^3/month ] ’ ) ;
547 legend ( [H1(1) H2(1) H3(1) ] , { ’ T ra in ing ’ ’ V a l i d a t i o n ’ ’ Tes t ing ’ }) ;
548 hold o f f ;
549 %% Find l i q u i d load ing po in t
550 i f PFM_LIQUID_LOADING
551 wel l LL = zeros (1 , nrWel l s ) ;
552 wel lPredRes = NaN*ones ( nrWel ls , f u t u r eP r ed i c t i o n s ) ;
553 for p=1: nrWel l s
554 wel l LL (p ) = find ( f i l t e r D a t a ( : , p* co l sPe rWe l l ) < c r i t i c a l _ r a t e s (p ) ,1 , ’

f i r s t ’ ) ;
555 end
556 for p=1: nrWel l s
557 % For a l l we l l s
558 c r i t i c a l _ r a t e = c r i t i c a l _ r a t e s (p ) ;
559 % C r i t i c a l ra te f o r a l l we l l s
560 fpr int f ( s t r c a t ( [ ’ \ nF ind ing c r i t i c a l ra te %0.2 f f o r ’ wellNames{p *

co l sPe rWe l l } ’ \n ’ ] ) , c r i t i c a l _ r a t e ) ;
561 % Pr i n t on which we l l we ’ re c a l c u l a t i n g
562 star tMonth = pastSteps+1;
563 % The i n i t i a l s t a r t month i s the requ i red prev ious months + 1
564 l i q u i d _ l o ad i n g = f a l s e ;
565 % Set the i n d i c a t o r f o r l i q u i d load ing to f a l s e
566 f u t u r eP r ed i c t i o n s = 12;
567 % How many months should we p r ed i c t ?
568 knownSamples = pastSteps ;
569 % No open−loop p red i c t i ons , on ly fu tu re data
570 while l i q u i d _ l o ad i n g==f a l s e && startMonth <= ( wel lEnd (p) −

f u t u r eP r ed i c t i o n s )
571 % While there i s no l i q u i d load ing , and there i s s t i l l data

f o r the we l l to eva luate p r ed i c t i o n
572 i f f i l t e r D a t a ( startMonth , co l sPe rWe l l * p ) < c r i t i c a l _ r a t e
573 % Is the f i l t e r e d data below the c r i t i c a l ra te ?
574 fpr int f ( ’ L i qu i d load ing occured in month %i \n ’ , s tar tMonth )

;
575 % Liqu id load ing occured
576 l i q u i d _ l o ad i n g = true ;
577 % Set the l i q u i d load ing i n d i c a t o r to t rue
578 cont inue ;
579 end
580 i f knownSamples + f u t u r eP r ed i c t i o n s > nrTimesteps
581 % Test i f we want more than there i s data a v a i l a b l e
582 disp ( ’WARNING: more p r ed i c t i o n s requested than data

a v a i l a b l e ’ ) ;
583 % Pr i n t a warning tha t we are changing the nr of fu tu re

p r ed i c t i o n s
584 f u t u r e P r e c i c t i o n s = nrTimesteps − knownSamples ;
585 % Get the maximum nr of p r ed i c t i o n s pos s i b l e to s t i l l

eva luate performance
586 end
587 % knownOutputTimesteps = ( star tMonth − pastSteps + 1) : (

knownSamples + startMonth − pastSteps ) ;
588 % What i s ”known” to our network −> ’ pastSteps ’ months before

’ startMonth ’
589 pred ic tOutputT imesteps = ( star tMonth − pastSteps + 1) : (

knownSamples + star tMonth − pastSteps ) + f u t u r eP r ed i c t i o n s ;
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590 % What do we want the network to p r ed i c t −> from ’ pastSteps ’
months before ’ startMonth ’ to ’ f u t u r eP r ed i c t i on s ’ months
past ’ startMonth ’

591 X1 = X( knownOutputTimesteps ) ;
592 % Label the known input data as X1
593 T1 = T( knownOutputTimesteps ) ;
594 % Label the known output data ( t a rge t ) as T1
595 [ x1 , x io , aio , t1c ] = preparets ( net , X1 , { } , T1) ;
596 % Prepare the network f o r data of t h i s format
597 [ y1 , xfo , afo ] = net ( x1 , x io , a io ) ;
598 % Create the network
599 % Next the the network and i t s f i n a l s t a t e s w i l l be converted

to closed−loop forms ;
600 X2 = X( pred ic tOutputT imesteps ) ;
601 % Label the ’ to p red i c t ’ i nput data as X2
602 T2 = T( pred ic tOutputT imesteps ) ;
603 % Label the ’ to p red i c t ’ output data ( t a rge t ) as T2
604 %[ netc , x i c , a i c ] = c lose loop ( net , xfo , afo ) ;
605 [ x2c , x2 ic , a2ic , t2c ] = preparets ( netc , X2 , { } , T2) ;
606 % Prepare the network f o r data of t h i s format
607 [ y2 , xfc , a fc ] = netc ( x2c , x2 ic , a2 i c ) ;
608 % Create the c losed loop network
609 mult iStepPerformance = perform ( net , t2c , y2 ) ;
610 % Evaluate i t ’ s performance
611 we l l P r e d i c t i o n = zeros ( length ( y2 ) , 2) ;
612 % Create empty matr ix to hold the p r ed i c t i o n s f o r t h i s we l l
613 t r ue_p red i c t i on = zeros ( length ( y2 ) , 2) ;
614 % Create empty matr ix to hold the p r ed i c t i o n s f o r t h i s we l l i n

L
615 for t =1: length ( y2 )
616 % For a l l p r ed i c t i o n s
617 for t a r =1: nrOfTargets
618 we l l P r e d i c t i o n ( t , t a r ) = y2{ t }( tar , p ) ;
619 % Store the p r ed i c t i o n i n we l l P r e d i c t i o n
620 end
621 end
622 i f PFM_LOGRETURN_DATA
623 i f PFM_NORM_DATA
624 t r ue_p red i c t i on ( : , 1 ) = data (1 ,p ) * cumprod(exp(

we l l P r e d i c t i o n ( : , 1 ) * we l lS td (p ) + wellMean (p) ) −
1) ;

625 % Ca l cu l a t e back to L
626 else
627 t r ue_p red i c t i on ( : , 1 ) = data (1 ,p ) * cumprod(exp(

we l l P r e d i c t i o n ( : , 1 ) ) − 1) ;
628 % Ca l cu l a t e back to L
629 end
630 else
631 i f PFM_NORM_DATA && PFM_LOG_DATA
632 t r ue_p red i c t i on ( : , 1 ) = 10.^( we l l P r e d i c t i o n ( : , 1 ) *

we l lS td (p ) + wellMean (p) ) ;
633 % Ca l cu l a t e back to L
634 else
635 i f PFM_NORM_DATA
636 t r ue_p red i c t i on ( : , 1 ) = we l l P r e d i c t i o n ( : , 1 ) *

we l lS td (p ) + wellMean (p) ;
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637 % Ca l cu l a t e back to L
638 else
639 i f PFM_LOG_DATA
640 t r ue_p red i c t i on ( : , 1 ) = 10.^( we l l P r e d i c t i o n

( : , 1 ) ) ;
641 % Ca l cu l a t e back to L
642 else
643 t r ue_p red i c t i on ( : , 1 ) = we l l P r e d i c t i o n ( : , 1 ) ;
644 % Ca l cu l a t e back to L
645 end
646 end
647 end
648 end
649 I = find ( t r ue_p red i c t i on ( : , 1 ) < c r i t i c a l _ r a t e , 1 , ’ f i r s t ’ ) ;
650 % Find the index of the f i r s t i ns tance of t r ue_p red i c t i on tha t

i s below the ’ c r i t i c a l _ r a t e ’
651 i f ~isempty ( I )
652 % I f the index i s not empty there were p r ed i c t i o n s below ’

c r i t i c a l _ r a t e ’
653 i f star tMonth >= ( we l l LL (p ) − f u t u r eP r ed i c t i o n s )
654 wel lPredRes (p , I ) = star tMonth + I − wel l LL (p ) ;
655 end
656 l i qu id_ load ing_month = startMonth + I ;
657 % Est imated l i q u i d load ing i s ’ I ’ months a f t e r the cur ren t

month we ’ re examining −> startMonth + I
658 fpr int f ( ’ In month %i L i qu i d load ing i s suspected in month

%i \n ’ , startMonth , l iqu id_ load ing_month ) ;
659 % Pr i n t month tha t i s suspect ing l i q u i d load ing
660 figure (p ) ;
661 % Open a f i g u r e to show t h i s p r ed i c t i o n
662 % Plo t the raw ta rge t data of the known par t
663 plot ( pred ic tOutputT imesteps (1 :end−f u t u r eP r ed i c t i o n s ) , data

( pred ic tOutputT imesteps (1 :end−f u t u r eP r ed i c t i o n s ) + (
windowSize−1) , p * co l sPe rWe l l ) , ’ bx ’ ) ;

664 hold a l l ;
665 % Plo t the raw ta rge t data of the pred i c ted par t
666 plot ( pred ic tOutputT imesteps (end−f u t u r eP r ed i c t i o n s :end) ,

data ( pred ic tOutputT imesteps (end−f u t u r eP r ed i c t i o n s :end)
+ ( windowSize−1) , p * co l sPe rWe l l ) , ’ bx ’ ) ;

667 curMonthData = data ( star tMonth + windowSize − 1 , p *
co l sPe rWe l l ) ;

668 i f PFM_FILTER_DATA
669 % Plo t the f i l t e r e d ta rge t data of the known par t
670 plot ( pred ic tOutputT imesteps (1 :end−f u t u r eP r ed i c t i o n s ) ,

f i l t e r D a t a ( pred ic tOutputT imesteps (1 :end−
f u t u r eP r ed i c t i o n s ) , p * co l sPe rWe l l ) , ’ r− ’ ) ;

671 % Plo t the f i l t e r e d ta rge t data of the pred i c ted par t
672 plot ( pred ic tOutputT imesteps (end−f u t u r eP r ed i c t i o n s :end)

, f i l t e r D a t a ( pred ic tOutputT imesteps (end−
f u t u r eP r ed i c t i o n s :end) , p * co l sPe rWe l l ) , ’ r−− ’ ) ;

673 curMonthData = f i l t e r D a t a ( startMonth , p * co l sPe rWe l l )
;

674 end
675 % Plo t the pred i c ted output data
676 plot ( pred ic tOutputT imesteps ( (end − length ( t r ue_p red i c t i on )

) :end) , [ curMonthData ; t r ue_p red i c t i on ( : , 1 ) ] , ’ g.− ’ ) ;
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677 plot ( [ pred ic tOutputT imesteps (1) pred ic tOutputT imesteps (end
) ] , [ c r i t i c a l _ r a t e c r i t i c a l _ r a t e ] ) ;

678 hold o f f ;
679 t i t l e ( wellNames{p * co l sPe rWe l l }) ;
680 xlabel ( ’ Month ’ ) ;
681 ylabel ( ’ P roduct ion ra te [Nm3/month ] ’ ) ;
682 drawnow;
683 pause ;
684 % Pause the s c r i p t to a l low in spec t i on of the p r ed i c t i o n
685 end
686 star tMonth = star tMonth + 1;
687 % Increase our startmonth with 1
688 end
689 end
690 end

1 close a l l ;
2 %% Load dataset
3 load ( ’ . / loopdata /2− l aye rs−75−neurons−tans ig− t r i a l −1.mat ’ ) ;
4 %% Set parameters
5 pastSteps = 36;

% Number
of past months used fo r p r ed i c t i o n

6 f u t u r eP r ed i c t i o n s = 12;
7 PFM_LIQUID_LOADING = 1;
8 %% Find l i q u i d load ing po in t
9 i f PFM_LIQUID_LOADING
10 star tMonth = pastSteps+1;
11 knownSamples = pastSteps ;
12 knownOutputTimesteps = ( star tMonth − pastSteps + 1) : ( knownSamples +

startMonth − pastSteps ) ;
13 X1 = X( knownOutputTimesteps ) ;
14 T1 = T( knownOutputTimesteps ) ;
15 [ x1 , x io , aio , t1c ] = preparets ( net , X1 , { } , T1) ;
16 [ y1 , xfo , afo ] = net ( x1 , x io , a io ) ;
17 [ netc , x i c , a i c ] = c lose loop ( net , xfo , afo ) ;
18
19 wel l LL = zeros (1 , nrWel l s ) ;
20 wel lPredRes = NaN*ones ( nrWel ls , f u t u r e P r ed i c t i o n s ) ;
21 for p=1: nrWel l s
22 wel l LL (p ) = find ( f i l t e r D a t a ( : , p* co l sPe rWe l l ) < c r i t i c a l _ r a t e s (p )

,1 , ’ f i r s t ’ ) ;
23 end
24 for p=1: nrWel l s
25 % For a l l we l l s
26 c r i t i c a l _ r a t e = c r i t i c a l _ r a t e s (p ) ;
27 % C r i t i c a l ra te f o r a l l we l l s
28 fpr int f ( s t r c a t ( [ ’ \ nF ind ing c r i t i c a l ra te %0.2 f f o r ’ wellNames{p *

co l sPe rWe l l } ’ \n ’ ] ) , c r i t i c a l _ r a t e ) ;
29 % Pr i n t on which we l l we ’ re c a l c u l a t i n g
30 star tMonth = pastSteps+1;
31 % The i n i t i a l s t a r t month i s the requ i red prev ious months + 1
32 l i q u i d _ l o ad i n g = f a l s e ;
33 % Set the i n d i c a t o r f o r l i q u i d load ing to f a l s e
34 f u t u r eP r ed i c t i o n s = 12;
35 % How many months should we p r ed i c t ?
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36 knownSamples = pastSteps ;
37 % No open−loop p red i c t i ons , on ly fu tu re data
38 while l i q u i d _ l o ad i n g==f a l s e && startMonth <= ( wel lEnd (p) −

f u t u r eP r ed i c t i o n s )
39 % While there i s no l i q u i d load ing , and there i s s t i l l data

f o r the we l l to eva luate p r ed i c t i o n
40 i f f i l t e r D a t a ( startMonth , co l sPe rWe l l * p ) < c r i t i c a l _ r a t e
41 % Is the f i l t e r e d data below the c r i t i c a l ra te ?
42 fpr int f ( ’ L i qu i d load ing occured in month %i \n ’ , s tar tMonth )

;
43 % Liqu id load ing occured
44 l i q u i d _ l o ad i n g = true ;
45 % Set the l i q u i d load ing i n d i c a t o r to t rue
46 cont inue ;
47 end
48 i f knownSamples + f u t u r eP r ed i c t i o n s > nrTimesteps
49 % Test i f we want more than there i s data a v a i l a b l e
50 disp ( ’WARNING: more p r ed i c t i o n s requested than data

a v a i l a b l e ’ ) ;
51 % Pr i n t a warning tha t we are changing the nr of fu tu re

p r ed i c t i o n s
52 f u t u r e P r e c i c t i o n s = nrTimesteps − knownSamples ;
53 % Get the maximum nr of p r ed i c t i o n s pos s i b l e to s t i l l

eva luate performance
54 end
55 end
56 star tMonth = startMonth + 1;
57 % Increase our startmonth with 1
58 end
59 end
60 %% Make p l o t
61 figure ( ) ;
62 [ ax ,H1 ,H2] = p lo tyy ( repmat (1 : f u t u r eP r ed i c t i on s ,3 ,1 ) ’ , [mean( wel lPredRes , ’

omitnan ’ ) ; mean( wel lPredRes , ’ omitnan ’ )−std ( wel lPredRes , ’ omitnan ’ ) ; mean
( wel lPredRes , ’ omitnan ’ )+std ( wel lPredRes , ’ omitnan ’ ) ] ’ , 1 :
f u t u r eP r ed i c t i on s ,sum(~isnan ( wel lPredRes ) ) ) ;

63 set (H1 , ’ Co lor ’ , [0 .3 0.3 0 .3 ] ) ;
64 set (H2 , ’ Co lor ’ , [1 0 0]) ;
65 set ( ax (2) , ’ YColor ’ , [1 0 0]) ;
66 axes ( ax (1) ) ;
67 axis ( [ 0 . 5 f u t u r eP r ed i c t i o n s +0.5 − f u t u r eP r ed i c t i o n s f u t u r eP r ed i c t i o n s ] ) ;
68 set ( ax (1) , ’ YTick ’ ,− f u t u r eP r ed i c t i o n s :2 : f u t u r eP r ed i c t i o n s ) ;
69 axes ( ax (2) ) ;
70 axis ( [ 0 . 5 f u t u r eP r ed i c t i o n s +0.5 0 nrWel l s ] ) ;
71 set (H1(2) , ’ L i n eS t y l e ’ , ’−− ’ ) ;
72 grid minor ;
73 xlabel ( ax (1) , ’ Months p r i o r to l i q u i d load ing [months ] ’ ) ;
74 ylabel ( ax (1) , ’ P r ed i c t i o n e r r o r [months ] ’ ) ;
75 ylabel ( ax (2) , ’ Number of we l l s p red i c ted [−] ’ ) ;
76 set (H1(3) , ’ L i n eS t y l e ’ , ’−− ’ ) ;
77 set ( ax (1) , ’ XTick ’ ,1 : f u t u r eP r ed i c t i o n s ) ;
78 set ( ax (1) , ’ XT ickLabe l ’ ,{12 11 10 9 8 7 6 5 4 3 2 1}) ;
79 legend ( ax (1) , ’ Average fo r e ca s t e r r o r ( \mu) ’ , ’ \mu + \ sigma ’ , ’ \mu − \ sigma ’ ,

’ Locat ion ’ , ’ NorthWest ’ ) ;
80 axes ( ax (1) ) ;
81 hold a l l
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82 for p = 1: nrWel l s
83 H = sca t t e r (1:12 , wel lPredRes (p , : ) , ’ f i l l e d ’ , ’ CData ’ , [0 .3 0.3 0 .3 ] , ’

S izeData ’ ,8 , ’ j i t t e r ’ , ’ on ’ , ’ j i t t e rAmount ’ ,0 .05) ;
84 end
85 putNr = 1;
86 figure ( ) ;
87 plot (1:12 , wel lPredRes ( putNr , : ) , ’ L ineWidth ’ , 1 .5 )
88 axis ( [ 0 . 5 f u t u r eP r ed i c t i o n s +0.5 − f u t u r eP r ed i c t i o n s f u t u r eP r ed i c t i o n s ] ) ;
89 grid minor ;
90 t i t l e ( [ ’ Wel l ’ num2str( putNr ) ] ) ;
91 xlabel ( ’ Months p r i o r to l i q u i d load ing [months ] ’ ) ;
92 ylabel ( ’ P r ed i c t i o n e r r o r [months ] ’ ) ;
93 set (gca , ’ XTick ’ ,1 : f u t u r eP r ed i c t i o n s ) ;
94 set (gca , ’ XT ickLabe l ’ ,{12 11 10 9 8 7 6 5 4 3 2 1}) ;

1 f i l e L i s t = dir ( ’ . / loopdata ’ ) ;
2 r e s u l tMa t r i x = nan (2 ,2 ,5 ,250) ;
3 for f =3: length ( f i l e L i s t )
4 load ( [ ’ . / loopdata / ’ f i l e L i s t ( f ) . name] , ’ a c t i v a t i onFunc t i on ’ , ’

h iddenLayerS ize ’ , ’ a f ’ , ’ t r i a l ’ , ’ performance ’ ) ;
5 nrLayers = length ( h iddenLayerS ize ) ;
6 nrNeurons = hiddenLayerS ize (1) ;
7 fpr int f ( ’%d l a ye r s %d neurons %s t r i a l %d : %e\n ’ , nrLayers , nrNeurons ,

a c t i v a t i onFunc t i on , t r i a l , performance ) ;
8 r e s u l tMa t r i x ( nrLayers , af , t r i a l , nrNeurons ) = performance ;
9 end
10 %% P lo t
11 l a ye r1Resu l t s = squeeze ( r e s u l tMa t r i x ( 1 , : , : , : ) ) ;
12 l a ye r1Resu l t s_ t ans i g = min( squeeze ( l a ye r1Resu l t s ( 1 , : , : ) ) , [ ] , ’ omitnan ’ ) ;
13 l a y e r1Resu l t s _ l og s i g = min( squeeze ( l a ye r1Resu l t s ( 2 , : , : ) ) , [ ] , ’ omitnan ’ ) ;
14
15 l a ye r1Resu l t s_ tans ig_x = find (~isnan ( l a ye r1Resu l t s_ t ans i g ) ) ;
16 l a ye r1Resu l t s_ l ogs i g_x = find (~isnan ( l a ye r1Resu l t s _ l og s i g ) ) ;
17
18 l a ye r1Resu l t s_ tans ig_y = laye r1Resu l t s_ t ans i g ( l aye r1Resu l t s_ tans ig_x ) ;
19 l a ye r1Resu l t s_ l ogs i g_y = l aye r1Resu l t s _ l og s i g ( l a ye r1Resu l t s_ l ogs i g_x ) ;
20
21 l a ye r2Resu l t s = squeeze ( r e s u l tMa t r i x ( 2 , : , : , : ) ) ;
22 l a ye r2Resu l t s_ t ans i g = min( squeeze ( l a ye r2Resu l t s ( 1 , : , : ) ) , [ ] , ’ omitnan ’ ) ;
23 l a y e r2Resu l t s _ l og s i g = min( squeeze ( l a ye r2Resu l t s ( 2 , : , : ) ) , [ ] , ’ omitnan ’ ) ;
24
25 l a ye r2Resu l t s_ tans ig_x = find (~isnan ( l a ye r2Resu l t s_ t ans i g ) ) ;
26 l a ye r2Resu l t s_ l ogs i g_x = find (~isnan ( l a ye r2Resu l t s _ l og s i g ) ) ;
27
28 l a ye r2Resu l t s_ tans ig_y = laye r2Resu l t s_ t ans i g ( l aye r2Resu l t s_ tans ig_x ) ;
29 l a ye r2Resu l t s_ l ogs i g_y = l aye r2Resu l t s _ l og s i g ( l a ye r2Resu l t s_ l ogs i g_x ) ;
30
31 figure ( ) ;
32 min_comp_plot = min ( [ length ( l aye r1Resu l t s_ tans ig_y ) length (

l a ye r1Resu l t s_ l ogs i g_y ) length ( l aye r2Resu l t s_ tans ig_y ) length (
l a ye r2Resu l t s_ l ogs i g_y ) ] ) ;

33 hold a l l ;
34 plot ( l aye r1Resu l t s_ tans ig_x (1 : min_comp_plot ) , l a ye r1Resu l t s_ tans ig_y (1 :

min_comp_plot ) , ’ Co lor ’ , [ 0 0.4470 0.7410] , ’ DisplayName ’ , ’ 1
l a ye r t ans i g ’ , ’ Marker ’ , ’ . ’ , ’ MarkerS ize ’ ,12) ;

35 plot ( l a ye r1Resu l t s_ l ogs i g_x (1 : min_comp_plot ) , l a ye r1Resu l t s_ l ogs i g_y (1 :
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min_comp_plot ) , ’ Co lor ’ , [0.8500 0.3250 0.0980] , ’ DisplayName ’ , ’ 1
l a ye r l o g s i g ’ , ’ Marker ’ , ’ . ’ , ’ MarkerS ize ’ ,12) ;

36 plot ( l aye r2Resu l t s_ tans ig_x (1 : min_comp_plot ) , l a ye r2Resu l t s_ tans ig_y (1 :
min_comp_plot ) , ’ Co lor ’ , [0.9290 0.6940 0.1250] , ’ DisplayName ’ , ’ 2
l a ye r t ans i g ’ , ’ Marker ’ , ’ . ’ , ’ MarkerS ize ’ ,12) ;

37 plot ( l a ye r2Resu l t s_ l ogs i g_x (1 : min_comp_plot ) , l a ye r2Resu l t s_ l ogs i g_y (1 :
min_comp_plot ) , ’ Co lor ’ , [0.4940 0.1840 0.5560] , ’ DisplayName ’ , ’ 2
l a ye r l o g s i g ’ , ’ Marker ’ , ’ . ’ , ’ MarkerS ize ’ ,12) ;

38 hold o f f ;
39 grid minor ;
40 t i t l e ( ’ Network performance ’ ) ;
41 xlabel ( ’Number of neurons [−] ’ ) ;
42 ylabel ( ’ Network performance MSE [−] ’ ) ;
43 legend show;
44
45 figure ( ) ;
46 plot ( l aye r2Resu l t s_ tans ig_x , l aye r2Resu l t s_ tans ig_y , ’ DisplayName ’ , ’ 2 l a ye r

t ans i g ’ , ’ Co lor ’ , [0.9290 0.6940 0.1250] , ’ Marker ’ , ’ . ’ , ’ MarkerS ize ’
,12) ;

47 grid minor ;
48 t i t l e ( ’ 2 l a ye r t ans i g network performance ’ ) ;
49 xlabel ( ’Number of neurons [−] ’ ) ;
50 ylabel ( ’ Network performance MSE [−] ’ ) ;
51 legend show;
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