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Chapter 1

Introduction

1.1 Geothermal Energy

With the increase in global energy consumption, the increase of global warm-
ing and rising energy prices there is a strong need for sustainable energy and
diversification of energy production. Geothermal energy is a sustainable energy
source which can be produced from the geothermal reservoirs in the earth. It has
the advantages over other sustainable resources that is always available and not
affected by external factors (seasons, wind, sun). In a geothermal system, heat
is produced from a suitable aquifer, the reservoir. This reservoir rock contains
geothermal energy (at sufficient depth) since the earth core is emitting heat to
its crust constantly. The source of the geothermal heat is decay of radioactive
isotopes like 40K, 232Th, 235U and 238U [3].

The potential of exploiting this heat led to a strong worldwide growth in
the geothermal energy market. The installed thermal power for direct usage of
geothermal energy is increasing with a compound rate of 12.3 % annually [16].
In the Netherlands, the governmental aim is to increase its share of renewable
energy up to 14% by the year 2020 [25]. Geothermal energy production is con-
sidered a viable option because it can operate as a base load energy supply [15],
unlike the majority of available sustainable energy sources.

In a geothermal doublet system the produced heat which is transported by
the water, is extracted from the fluid with a heat exchanger on surface level.
The cooled fluid is then subsequently injected back into the same reservoir via
the injection well to retain pressure support. The reservoir rock typically must
have high porosity and permeability in order to transmit and producer water
(Figure 1.1 ).
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Figure 1.1: Schematic representation of a geothermal doublet ([23])

Despite the potential of geothermal energy, almost all geothermal projects
in the Netherlands encountered lower than predicted well performance. In addi-
tion, geothermal projects are very expensive due to required deep well drilling.
It is therefor important to perform extensive studies on the subsurface in order
to achieve maximum thermal energy production.

The DAP (Delft Geothermal Project) is planned to be built in the Western
part of the Netherlands on the premises of the Delft University of Technology
(TU Delft) aiming for a Lower Cretaceous fluvial sandstone, the Delft Sandstone.
A recent study by Gilding [12] shows that hole water temperature readings indi-
cate a geothermal gradient of 3 ◦K/100m in the area surrounding the proposed
DAP location. The DAP project was put in motion in 2007 by the department
of Applied Earth Sciences in Delft with the main goal to develop geothermal
system which could supply TU Delft with sustainable heat. Extensive research
on the Delft sandstone, regarding the facilitation of the DAP project has lead to
increased knowledge on the local reservoir and subsurface characteristics. There-
for this study uses the Delft Sandstone as a representative geothermal reservoir
in an attempt to investigate some of the performance issues encountered so far
in geothermal projects in th Netherlands.
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